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Commutativity-Based Locking for Nested Transactions

Alan Fekete
Nancy Lynch

Michael Merritt
Bill Weihl

24 August 19881

Abstract:

A new model is introduced for reasoning about atomic transactions. This model allows careful
statement of the correctness conditions to be satisfied by transaction-processing algorithms, as
well as clear and concise description of such algorithms. It also serves as a framework for
rigorous correctness proofs. A new algorithm is introduced for general commutativity-based
locking in nested transaction systems. This algorithm and a previously-known read-update
locking algorithm are presented and proved correct using the new model. The proofs are based
on a general Serializability Theorem and a new dynamic atomicity condition for data objects.

1. Introduction

1.1. Atomic Transactions
The abstract notion of "atomic transaction" was originally developed to hide the effects of

failures and concurrency in centralized database systems. It has since been generalized to
incorporate a nested structure, and has been applied to problems in both centralized and
distributed systems.

Roughly speaking, a transaction is a sequence of accesses to data objects; it should execute "as
if" it ran with no interruption by other transactions. Moreover, a transaction can complete either
successfully or unsuccessfully, by "committing" or "aborting". If it commits, any alterations it
makes to the database should be lasting; if it aborts, it should be "as if" it never altered the
database at all. The execution of a set of transactions should be "serializable", that is, equivalent
to an execution in which no transactions run concurrently and in which all accesses of committed
transactions, but no accesses of aborted transactions, are performed.

The original motivation for transactions was to provide a way of maintaining the consistency
of a database. Maintaining consistency is difficult because the hardware can fail, and because
users can access the database concurrently. Transactions provide fault-tolerance by guaranteeing

'The work of the first and second authors was supported in part by the office of Naval Research under Contract
N00014-85-K-0168, by the National Science Foundation under Grant CCR-8611442, and by the Defense Advanced
Research Projects Agency (DARPA) under Contract N00014-83-K-0125. The work of the fourth author was
supported in part by the National Science Foundation under Grant CCR-8716884. and by the Defense Advanced
Research Projects Agency (DARPA) under Contract N00014-83-K-0125.



that either all or none of the effects of a transaction occur. Transactions also simplify the
problems of concurrent access by synchronizing the access of concurrent users so that the users
appear to access the database sequentially. The net effect is that one can guarantee that
consistency is preserved by ensuring that each transaction, when run alone and to completion,
preserves consistency. Given that each transaction preserves consistency, any serial execution of
transactions without failures (i.e., where each transaction runs to completion) also preserves
consistency. Since any serializable concurrent execution is equivalent to a serial execution
without failures, any serializable concurrent execution also preserves consistency.

Although much of the database literature focuses on preserving consistency, this alone is not
enough. Consider, for example, a simple database system in which no transaction ever actually
modifies the database. Such a database is always in a consistent state (assuming that the initial
state is consistent), but it is not very useful. A useful system should also guarantee something
about the connection between different transactions, and between transactions and the database
state. For example, ordinary serializability requires the final state of the database to be the same
as after a serial execution in which the same transactions occur. The "view serializability"
condition insists in addition that accesses to data return the same values as in the equivalent
serial execution. Also, either ordinary serializability or view serializability can be augmented by
an "external consistency" condition, which requires that the order of transactions in the
equivalent serial execution should be compatible with the order in which transaction invocations
and responses occur. A discussion of several correctness conditions can be found in Chapter 2 of
[231.

Recently, transactions have been explored as a way of organizing programs for distributed
systems [16, 251. Here, their purpose is not just to provide a way of keeping the state of the
database consistent, but also to provide the programmer with mechanisms that simplify
reasoning about programs. Failures and concurrency make it harder to reason about programs
because of the complexity of the interactions among concurrent activities, and because of the
multitude of failure modes. (See, for instance, the banking example in [161.) Transactions help
here by allowing the programmer to view a complex piece of code as if it is run atomically: it
appears to happen instantaneously, and it happens either completely or not at all.

1.2. Nested Transactions
In order for transactions to be useful for general distributed programming, the notion needs to

be extended to include nesting. Thus, in addition to accesses, a transaction can also contain
subtransactions. The transaction nesting structure can be described by a forest, with the top-level
transactions at the roots and the accesses to data at the leaves. (In general, leaves may occur at
any level. For example, a top-level transaction might be a single data access, or might invoke a
subtransaction and a data access as sibling subtransactions.) The semantics of nested
transactions generalize those of ordinary transactions as follows. Each set of sibling transactions
or suhtransactions is supposed to execute serializably. As with top-level transactions,
subtransactions can commit or abort. Each set of sibling transactions runs as if all the
transactions that committed ran in a serial order, and all the transactions that aborted did not run
at all. An external consistency property is also required for each set of siblings.

Nested transactions provide a very flexible programming mechanism. They allow the
programmer to describe more concurrency than would he allowed by single-level transactions,
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by having transactions request the creation of concurrent subtransactions. They also allow
localized handling of transaction failures. When a subtransaction commits or aborts, the commit
or abort is reported to its parent transaction. The parent can then decide on its next action based
on the reported results. For example, if a subtransaction aborts, its parent can use the reported
abort to trigger another subtransaction, one that implements some alternative action. This
flexible mechanism for handling failures is especially useful in distributed systems, where
failures are common because of the unreliability of communication.

Nested transactions are useful in other ways in distributed systems. For example, they can be
used to implement remote procedure calls with a "zero or once" semantics: the call appears to
happen either zero or one times despite retransmissions of request messages caused by poorly
chosen timeouts, lost acknowledgements and other problems of unreliable communication. This
is accomplished by treating incomplete or redundant calls as aborted subtransactions of the
caller, and undoing their activity without aborting the successful call. For another example,
nested transactions aid in the construction of replicated systems. The reading and writing of
individual copies of data objects can be done as subtransactions; even if some of the copies fail
to respond (causing their subtransactions to fail), the overall transaction can still succeed if
enough of the copies respond.

The idea of nested transactions seems to have originated in the "spheres of control" work of
[6]. Reed [241 developed the current notion of nesting and designed a timestamp-based

implementation. Moss [211 later designed a locking implementation that serves as the basis of
the implementation of the Argus programming language. A special case of nesting, emphasizing
levels of data abstraction, is used in System R and has been studied in [41, [31, [22], [28].

1.3. Transaction-Processing Algorithms
Many algorithms have been proposed and used for implementing non-nested atomic

transactions [7, 26, 15] and also for implementing nested transactions 124, 21]. These algorithms
make use of various techniques, including some based on locks, timestamps, multiple versions of
data objects, and multiple replicas. The most popular algorithms in practice are probably "read-
update" locking algorithms such as those in (7, 211, in which transactions must acquire read
locks or update locks on data objects in order to access the objects in the corresponding manner.
Update locks are defined to conflict with other locks on the same data object, and conflicting
locks are not permitted to be held simultaneously. Thus, a transaction that updates a data object
prevents or delays the operation of any other transaction that also wishes to update the same
object. The recent book [5] provides an excellent survey of the most important transaction-
processing algorithms for non-nested transactions.

There is an important limitation on the usefulness of read-update locking. Many systems
contain "concurrency bottlenecks": for example, if the data is organized into a hierarchical
structure, the roots of the structure are likely to be accessed by most of the transactions. If
read-update locking is used, a transaction that modifies the roots will prevent any other
transaction from accessing the root until the modifying transaction commits and releases its lock.
Thus, most transactions will be blocked for a significant period, and the throughput performance
will suffer. Concurrency bottlenecks also occur when the database contains data that
summaizes other data, such as a record of the total assets of a bank, In such cases, most
transactions that update the database will need to update the summary data, and thus will exclude
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one another from concurrent activity if update locks need to be obtained on the summary data.

Concurrency bottlenecks can often be avoided by using a concurrency control protocol specific
to a given data type. Read-update locking itself is a simple example of such a protocol:
transactions executing read operations can be allowed to run concurrently without sacrificing
atomicity. The correctness of this protocol depends on type-specific properties of the
transactions, namely, that certain operations do not modify the state of the database. This
example can be generalized to allow more concurrency than can be permitted by read-update
locking. For example, operations on summary data such as the total assets of a bank often
include increment, decrement, and read operations. Increment and decrement operations are
executed by transactions that transfer money into or out of the bank. Using read-update locking,
transactions executing increment and decrement operations must exclude each other. However,
it is possible to design more permissive concurrency control protocols for this example that use
the fact that increment and decrement operations commute to allow transactions executing them
to run concurrently. (Cf. IMS Fast Path [9].)

1.4. Need for a Formal Model
There are two reasons why a formal model is needed for reasoning about atomic transactions.

First, the implementors of languages that contain transactions need a model in order to reason
about the correctness of their implementations. Some of the algorithms that have been proposed
for implementing transactions are complicated, and informal arguments about their correctness
are not convincing. In fact, it is not even obvious how to state the precise correctness conditions
to be satisfied by the implementations; a model is needed for describing the semantics of
transactions carefully and formally. Second, if programming languages containing transactions
become popular, users of these languages will need a model to help them reason about the
behavior of their programs.

There has been considerable prior work on models for atomic transactions, summarized in [5].
This "classical" theory is primarily applicable to single-level transactions, rather than nested
transactions. It treats both concurrency control and recovery algorithms, although the treatments
of the two kinds of algorithms are not completely integrated. The theory assumes a system
organization in which accesses are passed from the transactions to a "scheduler", which
determines the order in which they are to be performed by the database. The database handles
recovery from transaction abort and media failure, so that each access to one data object is
performed in the state resulting from all previous non-aborted accesses to that object. The notion
of "serializability" in this theory can be described as "looking like a serial execution, from the
point of view of the database". Proofs for some algorithms are presented, primarily based on one
combinatorial theorem, the "Serializability Theorem". This important basic theorem states that
serializability is equivalent to the absence of cycles in a graph representing dependencies among
transactions. There has also been some recent work extending some of the ideas of the classical
theory to encompass special cases of nested transactions [4, 3, 281.

This work has some limitations. First, the notion of correctness is too restrictive, stated as it is
in terms of the object boundary in a particular system organization. The object interface that is
described is suitable for single-version locking and timestamp algorithms (in the absence of
transaction aborts), but it is much less appropriate for other kinds of algorithms. Multi-version
algorithms and replicated data algorithms, for example, maintain object information in a form
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that is very different from the (single-copy latest-value) form used for the simple algorithms, and
the appropriate object interface is also very different. The correctness conditions presented for
the simple algorithms in [5] thus do not apply without change to these other kinds, of algorithms.
It seems more appropriate, and useful in not unduly restricting possible implementations, to state
correctness conditions at the user interface to the system, rather than at the object boundary.

Second, there is no operational model for transactions; instead, they are characterized using
axioms about their executions. However, there are many situations in which such an operational
model would be useful. For example, it is possible for a transaction to create a subtransaction
because of the fact that an earlier subtransaction aborted; an operational model is helpful in
capturing this dependence. Also, it is sometimes interesting to describe how the same
transaction would behave in different systems. Such reasoning is facilitated by an operational
model that clarifies which actions occur under the transaction's control, and which are due to
activity of the environment.

A third limitation of the classical theory is that not everything one might wish to describe in
order to model nested transactions is modelled explicitly. For example, in a distributed
transaction-processing system, the task of performing an access to a data object might actually
consist of as many as five distinguishable events: a request by a transaction to perform the
access, the invocation of the access at the object, the completion of the access at the object, the
decision by the system that the access is to be committed rather than aborted, and a report to the
transaction of the results of the access. In reasoning about a nested transaction system, it is often
useful to consider these events separately, but all are encompassed by a single indivisible event
in the classical model.

The paper [17] contains a first attempt to develop a model for nested transactions that does not
have these limitations. That paper contains a complete proof of an exclusive locking algorithm
for nested transactions, but the framework used there does not appear to extend easily to treat
many other transaction-processing algorithms. Preliminary versions of the ideas in this paper
appear in [19, 8],

1.5. Contents of This Paper
In this paper, we define a new model for transactions that avoids the problems described in the

previous subsection. This improvement does not come for free: our model contains more detail
than the classical model, and may therefore seem more complicated. It seems to us, however,
that this extra detail is necessary. In fact, we believe that the extra detail is useful for
understanding not just nested transactions, but also ordinary single-level transactions. We use
this model to describe the correctness conditions that we use for transaction systems (including
nested transaction systems) - notions analogous to "serializability" but stated in terms of the user
interface rather than the database.

We then present a new and general locking algorithm that takes advantage of type-specific
information, specifically, the commutativity relationships among the operations on data objects,
to allow a high degree of concurrency. We also describe the nested transaction read-update
locking algorithm of [21] in our framework, and give complete proofs for both algorithms.

The proofs have an interesting structure. First, we prove our "Serializability Theorem", a
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general theorem containing a sufficient condition for proving correctness. Although this theorem
is more complicated to state than the classical Serializability Theorem, it is similar in spirit: it
shows that the existence of a single ordering of transactions that is consistent with the processing
of accesses at each object is sufficient to prove serializability. This theorem can be used to prove
the correctness of other algorithms besides those in this paper [1].

We next consider a particular system organization, in which the state of the database is
maintained by a collection of objects, each performing its own concurrency control and recovery.
The form in which the state is maintained and the algorithms used are not constrained. We then
define a new condition for data objects, called "dynamic atomicity". The Serializability
Theorem is used to show that if all the objects in a system are dynamic atomic, then the system
guarantees serializability. We prove that an object using our general commutativity-based
locking algorithm satisfies the dynamic atomicity condition and hence that our algorithm
guarantees serializability. The proof of the read-update algorithm involves showing that an
object using it provides a subset of the behavior of an object using the general algorithm and so
also is dynamic atomic.

The rest of the paper is organized as follows. Section 2 contains some mathematical
preliminaries. Section 3 contains a brief outline of the I/O automaton model, the basic model for
concurrent systems that is used for presenting all of the ideas of this paper. Section 4 contains a
description of "serial systems", extremely constrained transaction-processing systems that are
defined solely for the purpose of stating correctness conditions for more liberal systems. Section
5 contains a description of "simple systems", very unconstrained transaction-processing systems
that represent the common features of most transaction-processing systems. Section 6 contains
our Serializability Theorem, stated in terms of simple systems. Section 7 contains a description
of "generic systems", in which each data object is represented separately, a definition of the
"dynamic atomicity" condition for objects, and a proof (using the Serializability Theorem) that
this condition implies correctness. Section 8 contains a description of special restrictions on
objects that are exploited in our new algorithm. Section 9 contains the presentation of our
general locking algorithm, together with a proof (using dynamic atomicity) of its correctness.
Section 10 contains the presentation of Moss's read-update locking algorithm, together with a
proof (based on its relationship to the general algorithm) of its correctness. Section 11 contains
some final remarks.

2. Mathematical Preliminaries
An irreflexive partial order is a binary relation that is irreflexive, antisymmetric and transitive.

Two binary relations R and S are consistent if their union can be extended to an irreflexive
partial order (or in other words, if their union has no cycles).

The formal subject matter of this paper is concerned with finite and infinite sequences
describing the executions of automata. Usually, we will be discussing sequences of elements
from a universal set of actions. Formally, a sequence 13 of actions is a mapping from a prefix of
the positive integers to the set of actions. We describe the sequence by listing the images of
successive integers under the mapping, writing 13 = ICrII2 3....2 Since the same action may occur

2We use the symbols 13, y,... for sequences of actions and the symbols xr, and v/ for individual actions.
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several times in a sequence, it is convenient to distinguish the different occurrences. Thus, we
refer to a particular occurrence of an action in a sequence as an event. Formally, an event in a
sequence 13 = xtire2... of actions is an ordered pair (i,7t), where i is a positive integer and 7t is an

action, such that xi, the ith action in 13, is n.

A set of sequences P is prefix-closed provided that whenever 13 e P and y is a prefix of 1,it is
also the case that y e P. Similarly, a set of sequences P is limit-closed provided that any
sequence all of whose finite prefixes are in P is also in P.

3. The Input/Output Automaton Model
In order to reason carefully about complex concurrent systems such as those that implement

atomic transactions, it is important to have a simple and clearly-defined formal model for
concurrent computation. The model we use for our work is the input/output automaton model
[20, 18]. This model allows careful and readable descriptions of concurrent algorithms and of

the correctness conditions that they are supposed to satisfy. The model can serve as the basis for
rigorous proofs that particular algorithms satisfy particular correctness conditions.

This section contains an introduction to a simple special case of the model that is sufficient for
use in this paper.3

3.1. Basic Definitions
Each system component is modelled as an "I/O automaton", which is a mathematical object

somewhat like a traditional finite-state automaton. However, an I/O automaton need not be
finite-state, but can have an infinite state set. The actions of an I/O automaton are classified as
either "input", "output" or "internal". This classification is a reflection of a distinction in the
system being modelled, between events (such as the receipt of a message) that are caused by the
environment, events (such as sending a message) that the component can perform when it
chooses and that affect the environment, and events (such as changing the value of a local
variable) that a component can perform when it chooses, but that are undetectable by the
environment except through their effects on later events. In the model, an automaton generates
output and internal actions autonomously, and transmits output actions instantaneously to its
environment. In contrast, the automaton's input is generated by the environment and transmitted
instantaneously to the automaton. Our distinction between input and other actions is
fundamental, based on who determines when the action is performed: an automaton can establish
restrictions on when it will perform an output or internal action, but it is unable to block the
performance of an input action.

3.1.1. Action Signatures
A formal description of the classification of an automaton's actions is given by an "action

signature". An action signature S is an ordered triple consisting of three pairwise-disjoint sets of
actions. We write in(S), out(S) and int(S) for the three components of S, and refer to the actions
in the three sets as the input actions, output actions and internal actions of S, respectively. We

31n this paper, we only consider properties of finite executions, and do not consider "liveness" or "fairness"
properties.
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let ext(S) = in(S) u out(S) and refer to the actions in ext(S) as the external actions of S. Also, we
let local(S) = int(S) u out(S), and refer to the actions in local(S) as the locally-controlled actions
of S. Finally, we let acts(S) = in(S) u out(S) u int(S), and refer to the actions in acts(S) as the
actions of S.

An external action signature is an action signature consisting entirely of external actions, that
is, having no internal actions. If S is an action signature, then the external action signature of S
is the action signature extsig(S) = (in(S),out(S),0), i.e., the action signature that is obtained from
S by removing the internal actions.

3.1.2. Input/Output Automata
An inputloutput automaton A (also called an 1/0 automaton or simply an automaton) consists

of four components:

* an action signature sig(A),

* a set states(A) of states,

* a nonempty set start(A) _ states(A) of start states, and

* a transition relation steps(A) a states(A) x acts(sig(A)) x states(A), with the
property that for every state s' and input action n there is a transition (s',c,s) in
steps(A).

4

Note that the set of states need not be finite. We refer to an element (s',R,s) of steps(A) as a
step of A. The step (s',n,s) is called an input step of A if n is an input action, and output steps,
internal steps, external steps and locally-controlled steps are defined analogously. If (s',r,s) is a
step of A, then n is said to be enabled in s'. Since every input action is enabled in every state,
automata are said to be input-enabled. The input-enabling property means that the automaton is
not able to block input actions. If A is an automaton, we sometimes write acts(A) as shorthand
for acts(sig(A)), and likewise for in(A), out(A), etc. An 11O automaton A is said to be closed if
all its actions are locally-controlled, i.e., if in(A) = 0.

Note that an I/O automaton can be "nondeterministic", by which we mean two things: that
more than one locally-controlled action can be enabled in the same state, and that the same
action, applied in the same state, can lead to different successor states. This nondeterminism is
an important part of the model's descriptive power. Describing algorithms as
nondeterministically as possible tends to make results about the algorithms quite general, since
many results about nondeterministic algorithms apply a fortiori to all algorithms obtained by
restricting the nondeterministic choices. Moreover, the use of nondeterminism helps to avoid
cluttering algorithm descriptions and proofs with inessential details. Finally, the uncertainties
introduced by asynchrony make nondeterminism an intrinsic property of real concurrent systems,
and so an important property to capture in our formal model of quch systems.

4I/O automata, as dcfined in [20], also include a fifth component, an equivalence relation part(A) on
Iocal(sig(A)). This component is used for describing fair executions, and is not needed for the results described in
this paper.



3.1.3. Executions, Schedules and Behaviors
When a system is modelled by an I/O automaton, each possible run of the system is modelled

by an "execution", an alternating sequence of states and actions. The possible activity of the
system is captured by the set of all possible executions that can be generated by the automaton.
However, not all the information contained in an execution is important to a user of the system,
nor to an environment in which the system is placed. We believe that what is important about
the activity of a system is the externally-visible events, and not the states or internal events.
Thus, we focus on the automaton's "behaviors" - the subsequences of its executions consisting
of external (i.e., input and output) actions. We regard a system as suitable for a purpose if any
possible sequence of externally-visible events has appropriate characteristics. Thus, in the
model, we formulate correctness conditions for an I/O automaton in terms of properties of the
automaton's behaviors.

Formally, an execution fragment of A is a finite sequence s 1S 1g2 .. .icnSn or infinite sequence

SoXS92 ... nSn... of alternating states and actions of A such that (sisi+,) is a step of A for
every i. An execution fragment beginning with a start state is called an execution. We denote
the set of executions of A by execs(A), and the set of finite executions of A by finexecs(A). A
state is said to be reachable in A if it is the final state of a finite execution of A.

The schedule of an execution fragment x of A is the subsequence of a consisting of actions,
and is denoted by sched(ax). We say that [3 is a schedule of A if 3 is the schedule of an execution
of A. We denote the set of schedules of A by scheds(A) and the set of finite schedules of A by

finscheds(A). The behavior of a sequence 3 of actions in acts(A), denoted by beh(3), is the
subsequence of 03 consisting of actions in ext(A). The behavior of an execution fragment a of A,
denoted by beh(a), is defined to be beh(sched(a)). We say that 3 is a behavior of A if 3 is the
behavior of an execution of A. We denote the set of behaviors of A by behs(A) and the set of
finite behaviors of A byfinbehs(A).

An extended step of an automaton A is a triple of the form (s',,s), where s' and s are in
states(A), 13 is a finite sequence of actions in acts(A), and there is an execution fragment of A
having s' as its first state, s as its last state and 13 as its schedule. (This execution fragment might
consist of only a single state, in the case that 13 is the empty sequence.) If y is a sequence of
actions in ext(A), we say that (s',,s) is a move of A if there is an extended step (s',P3,s) of A such
that y = beh(p3).

We say that a finite schedule 03 of A can leave A in state s if there is some finite execution ax of
A with final state s and with sched(a) = 3. We say that an action 7t is enabled after a finite
schedule 13 of A if there is a state s such that 3 can leave A in state s and n is enabled in s.

If a is any sequence of actions and A is an automaton, we write alA for alacts(A).

3.2. Composition
Often, a single system can also be viewed as a combination of several component systems

interacting with one another. To reflect this in our model, we define an operation called
"composition", by which several I/O automata can be combined to yield a single 1/0 automaton.
Our composition operator connects each output action of the component automata with the
identically named input actions of any number (usually one) of the other component automata.
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In the resulting system, an output action is generated autonomously by one component and is
thought of as being instantaneously transmitted to all components having the same action as an
input. All such components are passive recipients of the input, and take steps simultaneously
with the output step.

3.2.1. Composition of Action Signatures
We first define composition of action signatures. Let I be an index set that is at most

countable. A collection (Si) E I of action signatures is said to be strongly compatible5 if for all i.
j e I, we have

1. out(Si) n out(Sj) = 0,

2. int(Si) r) acts(Sj) = 0, and

3. no action is in acts(Si) for infinitely many i.
Thus, no action is an output of more than one signature in the collection, and internal actions of
any signature do not appear in any other signature in the collection. Moreover, we do not permit
actions involving infinitely many component signatures.

The composition S = -li. 1Si of a collection of strongly compatible action signatures (Si }ic I is
defined to be the action signature with

" in(S) = u. iin(Si) - uic iout(Si),

* out(S) = .i iout(Si), and

" int(S) = uie int(Si).
Thus, output actions are those that are outputs of any of the component signatures, and similarly
for internal actions. Input actions are any actions that are inputs to any of the component
signatures, but outputs of no component signature.

3.2.2. Composition of Automata
A collection (Ai) i I of automata is said to be strongly compatible if their action signatures are

strongly compatible. The composition A = fI 1A i of a strongly compatible collection of

automata (Ai) i I has the following components: 6

• sig(A) =- li I sig(Ai),

" states(A) = rl'i I staes(Ai),

" start(A) = r1i I start(A) , and

" steps(A) is the set of triples (s',t,s) such that for all i e I, (a) if n e acts(A i) then

(s'li],n,s[ij) e steps(Ai), and (b) if 7t e acts(Ai) then s'[i] = sii]. 7

5A weaker notion called "compatibility" is defined in 120], consisting of the first two of the three given properties
only. For the purposes of this paper, only the stronger notion will be required.

6Note that the second and third components listed are just ordinary Cartesian products, while the first component
uses a previous definition.

7We use the notation s[i] to denote the ithcomponent of the state vector s.
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Since the automata Ai are input-enabled, so is their composition, and hence their composition
is an automaton. Each step of the composition automaton consists of all the automata that have a
particular action in their action signature performing that action concurrently, while the automata
that do not have that action in their signature do nothing. We will often refer to an automaton
formed by composition as a "system" of automata.

If a = son~s,... is an execution of A, let alA. be the sequence obtained by deleting t-s. when R .
is not an action of A i, and replacing the remaining s. by sj[i]. Recall that we have previously
defined a projection operator for action sequences. he two projection operators are related in
the obvious way: sched(zlA i) = sched(ac)lA i, and similarly beh(CIAi) = beh(a)lAi.

In the course of our discussions we will often reason about automata without specifying their
internal actions. To avoid tedious arguments about compatibility, henceforth we assume that
unspecified internal actions of any automaton are unique to that automaton, and do not occur as
internal or external artions of any of the other automata we discuss.

All of the systems that we will use for modelling transactions are closed systems, that is, each
operation is an output of some component. Also, each output of a component will be an input of
at most one other component.

3.2.3. Properties of Systems of Automata
Here we give basic results relating executions, schedules and behaviors of a system of

automata to those of the automata being composed. The first result says that the projections of
executions of a system onto the components are executions of the components, and similarly for
schedules, etc.

Proposition 1: Let (Ai) i) I be a strongly compatible collection of automata, and let
A " llilAi. If cx e execs(A) then alA i E execs(A i) for all i r I. Moreover, the same
result holds for finexecs, scheds, finscheds, behs and finbehs in place of execs.

Certain converses of the preceding proposition are also true. In particular, we can prove that
schedules of component automata can be "patched together" to form a schedule of the
composition, and similarly for behaviors.

Proposition 2: Let (Ai} i I be a strongly compatible collection of automata, and let
A = rie IAi.

1. Let 13 be a sequence of actions in acts(A). If 131A i e scheds(Ai) for all i E I,
then 13 e scheds(A).

2. Let 13 be a finite sequence of actions in acts(A). If 131A i e finscheds(Ai) for all
i e I, then 13 e finscheds(A).

3. Let 13 be a sequence of actions in ext(A). If 131A i e behs(Ai) for all i e I, then
13 e behs(A).

4. Let 13 be a finite sequence of actions in ext(A). If 131A i e finbehs(Ai) for all i

e I, then 13 e finbehs(A).

The preceding proposition is useful in proving that a sequence of actions is a behavior of a
composition A: it suffices to show that the sequence's projections are behaviors of the
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components of A and then to appeal to Proposition 2.

3.3. Implementation
We define a notion of "implementation" of one automaton by another. Let A and B be

automata with the same external action signature, i.e., with extsig(A) = extsig(B). Then A is said
to implement B if finbehs(A) C finbehs(B). One way in which this notion can be used is the
following. Suppose we can show that an automaton A is "correct", in the sense that its finite
behaviors all satisfy some specified property. Then if another automaton B implements A, B is
also correct. One can also show that if A implements B, then replacing B by A in any system
yields a new system in which all finite behaviors are behaviors of the original system. 8

In order to show that one automaton implements another, it is often useful to demonstrate a
correspondence between states of the two automata. Such a correspondence can often be
expressed in the form of a kind of abstraction mapping that we call a "possibilities mapping",
defined as follows. Suppose A and B are automata with the same external action signature, and
suppose f is a mapping from states(A) to the power set of states(B). That is, if s is a state of A,
f(s) is a set of states of B. The mapping f is said to be a possibilities mapping from A to B if the
following conditions hold:

1. For every start state so of A, there is a start state to of B such that to e f(s0).

2. Let s' be a reachable state of A, t' r f(s') a reachable state of B, and (s',x,s) a step
of A. Then there is an extended step, (t',y,t), of B (possibly having an empty
schedule) such that the following conditions are satisfied:

a. ?text(B) = itlext(A), and

b. t E f(s).
Proposition 3: Suppose that A and B are automata with the same external action

signature and there is a possibilities mapping, f, from A to B. Then A implements B.

3.4. Preserving Properties
Although automata in our model are unable to block input actions, it is often convenient to

restrict attention to those behaviors in which the environment provides inputs in a "sensible"
way, that is, where the environment obeys certain "well-formedness" restrictions. A useful way
of discussing such restrictions is in terms of the notion that an automaton "preserves" a property
of behaviors: as long as the environment does not violate the property, neither does the
automaton. Such a notion is primarily interesting for properties that are prefix-closed and limit-
closed. Let 4) be a set of actions and P be a nonempty, prefix-closed, limit-closed set of
sequences of actions in 0 (i.e., a nonempty, prefix-closed, limit-closed "property" of such
sequences). Let A be an automaton with (D C ext(A). We say that A preserves P if 3t e
finbehs(A), t e out(A) and 310 e P together imply that 3i* E P.

Thus, if an automaton preserves a property P, the automaton is not the first to violate P: as long

8A stronger, and often useful notion of "A implements B" would require both finite and infinite behaviors of A to
be behaviors of B, bchs(A) r bchs(B). This condition is too strong for us to use in defining correctness conditions
for the locking algorithms considered in this paper.
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as the environment only provides inputs such that the cumulative behavior satisfies P, the
automaton will only perform outputs such that the cumulative behavior satisfies P. Note that the
fact that an automaton A preserves a property P does not imply that all of A's behaviors, when
restricted to 0, satisfy P; it is possible for a behavior of A to fail to satisfy P, if an input causes a
violation of P. However, the following proposition gives a way to deduce that all of a system's
behaviors satisfy P. The lemma says that, under certain conditions, if all components of a system
preserve P, then all the behaviors of the composition satisfy P.

Proposition 4: Let (Aii Il be a strongly compatible collection of automata, and
suppose that A, the composition, is a closed system. Let 0 a ext(A), and let P be a
nonempty, prefix-closed, limit-closed set of sequences of actions in 0. Suppose that
for each i e I, one of the following is true.

1. 0 r ext(Ai) and Ai preserves P, or

2. D r) ext(Ai) = 0.
If 0 e behs(A), then 010 e P.

4. Serial Systems and Correctness
In this section, we develop the formal machinery needed to define correctness for transaction-

processing systems. Correctness is expressed in terms of a particular kind of system called a
"serial system". We define serial systems here, using I/0 automata.

4.1. Overview
Transaction-processing systems consist of user-provided transaction code, plus transaction-

4 processing algorithms designed to coordinate the activities of different transactions. The
transactions are written by application programmers in a suitable programming language.
Transactions are permitted to invoke operations on data objects. In addition, if nesting is
allowed, then transactions can invoke subtransactions and receive responses from the
subtransactions describing the results of their processing.

In a transaction-processing system, the transaction-processing algorithms interact with the
transactions, making decisions about when to schedule the creation of subtransactions and the
performance of operations on objects. In order to carry out such scheduling, the transaction-
processing algorithms may manipulate locks, multiple copies of objects, and other data
structures. In the system organization emphasized by the classical theory, the transaction
processing algorithms are divided into a "scheduler algorithm" and a "database" of objects. The
scheduler has the power to decide when operations are to be performed on the objects in the
database, but not to perform more complex manipulations on objects (such as maintaining
multiple copies). Although this organization is popular, it does not encompass all the useful
system designs.

In this paper, each component of a transaction-processing system is described as an I/O
automaton. In particular, each transaction is an automaton, and all the transaction-processing
algorithms together comprise another automaton. Sometimes, as when describing serial systems
or explaining our algorithms, we will use a more detailed structure, and present the transaction-
processing algorithms as a composition of a collection of automata, one representing each object,
and one representing the rest of the system.
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It is not obvious how one ought to model the nested structure of transactions within the I/O
automaton model. One might consider defining special kinds of automata that have a nested
structure. However, it appears that the cleanest way to model this structure is to describe each
subtransaction in the transaction nesting structure as a separate automaton. If a parent
transaction T wishes to invoke a child transaction T', T will issue an output action that "requests
that T' be created". The transaction-processing algorithms receive this request, and at some later
time might decide to issue an action that is an input to the child T' and corresponds to the
"creation" of T'. Thus, the different transactions in the nesting structure comprise a forest of
automata, communicating with each other indirectly through the transaction-processing
automaton. The highest-level user-defined transactions, i.e., those that are not subtransactions of
any other user-defined transactions, are the roots in this forest.

It is actually more convenient to model the transaction nesting structure as a tree rather than as
a forest. Thus, we add an extra "root" automaton as a "dummy transaction", located at the top of
the transaction nesting structure. The highest-level user-defined transactions are considered to
be children of this new root. The root can be thought of as modelling the outside world, from
which invocations of top-level transactions originate and to which reports about the results of
such transactions are sent; indeed, we will generally regard the boundary between this root
transaction and the rest of the system as the "user interface" to the system. The use of the root
transaction works out nicely in the formal development: in most cases, the reasoning we do
about this dummy root transaction is very similar to the reasoning we do about ordinary
transactions, so that regarding the root as a transaction leads to economy in our formal
arguments.

The main purpose of this section is to define correctness conditions to be satisfied by
transaction-processing systems. In general, correctness conditions for systems composed of I/O
automata are stated in terms of properties of sequences of external actions, and we will follow
that convention in this paper. Here it seems most natural to define correctness conditions in
terms of the actions occurring at the boundary between the transactions (including the dummy
root transaction) and the transaction-processing automaton. For it is immaterial how the
transaction-processing algorithms work, as long as the outside world and the transactions see
'correct" behavior.

We define correct behavior for a transaction-processing system in terms of the behavior of a
particular and very constrained transaction-processing system, one that processes all transactions
serially. We call such a system a "serial system". Serial systems consist of transaction automata
and "serial object automata" composed with a "serial scheduler automaton". Transaction
automata have already been mentioned above. Serial object automata serve as specifications for
permissible object behavior. They describe the responses the objects should make to arbitrary
sequences of operation invocations, assuming that later invocations wait for responses to
previous invocations. Serial objects are very much like the ordi.ary typed variables that occur in
sequential programming languages.

The serial scheduler handles the communication among the transactions and serial objects, and
thereby controls the order in which the transactions take steps. It ensures that no two sibling
transactions are active concurrently - that is, it runs each set of sibling transactions serially.
The serial scheduler is also responsible for deciding if a transaction commits or aborts. The
serial scheduler can permit a transaction to abort only if its parent has requested its creation, but
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it has not actually been created. Thus, in a serial system, all sets of sibling transactions, are run
serially, and in such a way that no aborted transaction ever performs any steps.

We do not consider serial systems to be useful transaction-processing systems to implement,
because they allow no concurrency among sibling transactions, and have only a very limited
ability to cope with transaction failures. Rather, we use them exclusively as specifications for
cct behavior of other, more interesting systems. In later sections, we will describe some
systems that do allow concurrency and recovery from transaction failures. (For example, they
undo the effects of aborted transactions that have performed significant activity.) We prove that
these systems are correct in the sense that certain transactions, in particular the root transaction,
are unable to distinguish these systems from corresponding serial systems. It appears to the
transactions as if all siblings are run serially, and aborted ansactions are never created.

In the remainder of this section, we develop all the necessary machinery for defining serial
systems. First, we define a type structure used to name transactions and objects. Then we
describe the general structure of a serial system - the components it includes, the actions the
components perform, and the way that the components are interconnected. We define several
concepts involving the actions of a serial system. We then define the components of the serial
system in detail, and state some basic properties of serial systems. Next, we use serial systems to
state the correctness conditions that we will use for the remainder of this paper.

4.2. System Types
We begin by defining a type structure that will be used to name the transactions and objects in

a serial system.

A system type consists of the following:

" a set Tof transaction names,

" a distinguished transaction name To cc T,

* a subset accesses of Tnot containing T0 ,

" a mapping parent. T- (T0) -+ , which configures the set of transaction names into
a tree, with T0 as the root and the accesses as the leaves,

" a set Xof object names,

" a mapping object accesses -+ X, and

" a set V of return values.

Each element of the set "accesses" is called an access transaction aame, or simply an access.
Also, the set of accesses T for which object(T) = X is called accessesx; if T e accessesx we say
that T is an access to X.

In referring to the transaction tree, we use standard tree terminology, such as "leaf node",
"internal node", "child", "ancestor", and "descendant". As a special case, we consider any node
to be its own ancestor and its own descendant, i.e. the "ancestor" and "descendant" relations are
reflexive. We also use the notion of a "least common ancestor" of two nodes.



The transaction tree describes the nesting structure for transaction names, with To as the name
of the dummy "root transaction". Each child node in this tree represents the name of a
subrmsaction of the transaction named by its parent. The children of To represent names of the
top-level user-defined tmnsacdons. The accesses represent names for the lowest-level
transactions in the transaction nesting structure; we will use these lowest-level transactions to
model operations on data objects. Thus, the only transactions that actually access data are the
leaves of the transaction tr and these do nothing else. The internal nodes model transactions
whose function is to create and manage subtransactions including accesses, but they do not
access data directly.

The tree structure should be thought of as a predefined naming scheme for all possible
transactions that might ever be invoked. In any particular execution, however, only some of
these transactions will actually take steps. We imagine that the tree structure is known in
advance by all components of a system. The tree will, in general, be an infinite structure with
infinite branching.

Classical concurrency control theory, as represented, for example, in [51, considers
transactions having a simple nesting structure. As modelled in our framework, that nesting
structure has three levels; the top level consists of the root To , modelling the outside world, the
next level consists of all the user-defined transactions, and the lowest level consists of the
accesses to data objects.

The set Xis the set of names for the objects used in the system. Each access transaction name
is assumed to be an access to some particular object, as designated by the "object" mapping. The
set V of return values is the set of possible values that might be returned by successfully-
completed transactions to their parent transactions.

If T is an access transaction name, and v is a return value, we say that the pair (T,v) is an
operation of the given system type. Thus, an operation includes a designation of a particular
access to an object, together with a designation of the value returned by the access.
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4.3. Genenld Structure of Serial Systems
A serial system for a given system type is a closed system consisting of a "transaction

automaton" AT for each non-access transaction name T, a "serial object automaton" SX for each

object name X, and a single "serial scheduler automaton". Later in this section, we will give a

precise definition for the serial scheduler automaton, and will give conditions to be satisfied by
the transaction and object automata. Here, we just describe the signatures of the various
automata, in order to explain how the automata are interconnected.

The following diagram depicts the structure of a serial system.
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auzonwa.-oneupomlito pawata of accesss to the object The direct connet'tions between
aumuta (via shaud actions) ar, indicated by solid lines. Thtzs the transaction automata

interac ircty wit. the icuial sceueb not directly with eahother or with the object
automliL The object automat also interct directly with the sril scheduler..
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CREATE(Tj EQUEST.COMMIT(T,v)

AT T' a child of T

REQUEST..CREATE(T' PORrABORT(T')
T, [PORToCOMMIT(T',v')

Figure 2: Transaction Automaton

Figure 2 shows the interface of a transaction automaton in more detail. Transaction T has an
input CREATE(T) action, which is generated by the serial scheduler in order to initiate T's
processing. We do not include explicit arguments to a transaction in our model; rather we
suppose that there is a different transaction for each possible set of arguments, and so any input
to the transaction is encoded in the name of the transaction. T has REQUESTCREATE(T')
actions for each child T' of T in the transaction nesting structure; these are requests for creation
of child transactions, and are communicated directly to the serial scheduler. At some later time,
the scheduler might respond to a REQUESTCREATE(l') action by issuing a CREATE(T')
action, an input to transaction T'. T also has REPORTCOMMIT(T',v) and
REPORTABORT(T') input actions, by which the serial scheduler informs T about the fate
(commit or abort) of its previously-requested child T'. In the case of a commit, the report
includes a return value v that provides information about the activity of T'; in the case of an
abort, no information is returned. Finally, T has a REQUESTCOMMIT(T,v) output action, by
which it announces to the scheduler that it has completed its activity successfully, with a
particular result as described by return value v.

EQUEST.OOMMIT(T,v)

(T an access to X

CREATE(T)

Figure 3: Object Automaton

Figure 3 shows the object interface. Object X has input CREATE(T) actions for each T in
accossesx. These actions should be thought of as invocations of operations on object X. Object
X also has output actions of the form REQUESTCOMMIT(Tv), representing responses to the
invocations. The value v in a REQUESTCOMMIT(Tv) action is a return value returned by the
object as part of its response. We have chosen to use the "create" and "request_commit" notation
for the object actions, rather than the more familiar "invoke" and "respond" terminology, in the



interests of uniformity: there are many places in our formal arguments where access transactions
can be treated uniformly with non-access transactions, and so it is useful to have a common
notation for them.

REPORT.COMMIT Tv

~~C0MM1r(TrlABOR'r(TJ

Figure 4: Serial Scheduler Automaton

Figure 4 shows the serial scheduler interface. The serial scheduler receives the previously-
mentioned REQUESTCREATE and REQUESTCOMMIT actions as inputs from the other
system components. It produces CREATE actions as outputs, thereby awakening transaction
automata or invoking operations on objects. It also produces COMMIT(T) and ABORT(T)
actions for arbitrary transactions T * T0, representing decisions about whether the designated
transaction commits or aborts. For technical convenience, we classify the COMMIT and
ABORT actions as output actions of the serial scheduler, even when they are not inputs to any
other system component 8 Finally, the serial scheduler has REPORTCOMMIT and
REPORT-ABORT actions as outputs, by which it communicates the fates of transactions to their
parents.

As is always the case for 1/0 automata, the components of a system are determined statically.
Even though we referred earlier to the action of "creating" a child transaction, the model treats
the child transaction as if it had been there all along. The CREATE action is treated formally as
an input action to the child, transaction; the child transaction will be constrained not to perform
any output actions until such a CREATE action occurs. A consequence of this method of
modelling dynamic creation of transactions is that the system must include automata for all
possible transactions that might ever be created, in any execution. In most interesting cases, this
means that the syswnm will include infinitely many transaction automata.

4.4. Serial! Actions
The serial actions for a given system type are defined to be the external actions of a serial

system of that- type These are just the actions listed in the preceding. subsection: CREATE(T)
and' REQUESTCOhMlT(,v), where T is any transaction name and v is a return value, and
REQUESTCREATE(T), COM (T). ABORTM, REPORT_COMMIT(T,v), and!

C1usifuiwatiauusas ouqals'even t1uh dmy m not inputs to any other system component is permissible in
the 0Waonwam mo eL In this. cm, it would als be possible to clasify these two actions as internal actions of
the serial s.hldalr, but then the swtemens and roofs of the ensuing results would be slightly more complicated.
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REPORTABORT(T) where T * To is a transaction name and v is a return value. 9

In this subsection, we define some basic concepts involving serial actions. All the definitions
in this subsection are based on the set of serial actions only, and not on the specific automata in
the serial system. For this reason, we present these definitions here, before going on (in the next
subsection) to give more information about the system components.

We first present some basic definitions, and then we define "well-formedness" for sequences
of external actions of transactions and objects.

4.4.1. Basic Definitions
The COMMIT(T) and ABORT(T) actions are called completion actions for T, while the

REPORTCOMMIT(T,v) and REPORTABORT(T) actions are called report actions for T.

With each serial action x that appears in the interface of a transaction or object automaton (that
is, with any non-completion action), we associate the natural transaction. Let T be any
transaction name. If x is one of the serial actions CREATE(T), REQUESTCOMMIT(T,v), or
REQUESTCREATE(T'), REPORTCOMMIT(T',v') or REPORTABORT(T'), where T' is a
child of T, then we define transaction(n) to be T. If x is a completion action, then transaction(It)
is undefined. In some contexts, we will need to associate a transaction with completion actions
as well as other serial actions; since a completion action for T can be thought of as occurring "in
between" T and parent(T), we will sometimes want to associate T and sometimes parent(T) with
the action. Thus, we extend the "transaction(n)" definition in two different ways. If X is any
serial action, then we define hightransaction(x) to be transaction(g) if X is not a completion
action, and to be parent(T), if x is a completion action for T. Also, if r. is any serial action, we
define lowtransaction(it) to be transaction(n) if ic is not a completion action, and to be T, if x is a
completion action for T. In particular, hightransaction(n) = lowtransaction(n) = transaction(n)
for all serial actions other than completion actions.

We also require notation for the object associated with any serial action whose transaction is
an access. If x is a serial action of the form CREATE(T) or REQUESTCOMMIT(T,v), where
T is an access to X, then we define object(n) to be X.

We extend the preceding notation to events as well as actions. For example, if n is an event,
then we write transaction(it) to denote the transaction of the action of which x is an occurrence.
We extend the definitions of "hightransaction", "lowtransaction", and "object" similarly. We
will extend other notation in this paper in the same way, without further explanation.

Recall that an operation is a pair (Tv), consisting of a transaction name and a return value.
We can associate operations with a sequence of serial actions: if J0 is a sequence of serial actions,
we say that the operation (Tv) occurs in 0 if there is a REQUEST_COMM1T(T,v) event in P.
Conversely, we can associate serial actions with a sequence of operations: for any operation
(T,v), let perform(Tv) denote the two-action sequence CREATE(T) REQUESTCOMMIT(Tv),

9Laer in the paper, we will define oter kinds of systems besides serial systems, namely, simple systems and
generic systems. These will also include the serial actions among their external actions; we will still refer to these
actions as "serial actions" even though they appear in non-serial systems.
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the expansion of (T,v) into its two parts. This definition is extended to sequences of operations
in the natural way: if 4 is a sequence of operations of the form 4'(T,v), then perform(4) =
perform(k') perform(Tv). Thus, the "perform" function expands a sequence of operations into a
corresponding alternating sequence of CREATE and REQUESTCOMMIT actions.

Now we require terminology to describe the status of a transaction during execution. Let 03 be
a sequence of serial actions. A transaction name T is said to be active in 03 provided that (3
contains a CREATE(T) event but no REQUESTCOMMT event for T. Similarly, T is said to
be live in 03 provided that (3 contains a CREATE(T) event but no completion event for
T. (However, note that (3 may contain a REQUEST-COMMIT for T.) Also, T is said to be an
orphan in (3 if there is an ABORT(U) action in 3 for some ancestor U of T.

We have already used projection operators to restrict action sequences to particular sets of
actions, and to actions of particular automata. We now introduce another projection operator,
this time to sets of transaction names. Namely, if 3 is a sequence of serial actions and &'is a set
of transaction names, then 1I'is defined to be the sequence 1(it: transaction(n) e 01. If T is a
transaction name, we sometimes write 3IT as shorthand for P1(T). Similarly, if (3 is a se¢qvnce
of serial actions and X is an object name, we sometimes write 15IX to denote 01(z: object(x) =
X).

Sometimes we will want to use definitions from this subsection for sequences of actions
chosen from some other set besides the set of serial actions - usually, a set containing the set of
serial actions. We extend the appropriate.definitions of this subsection to such sequences by
applying them to the subsequences consisting of serial actions. Thus, if (3 is a sequence of
actions chosen from a set V of actions, define serial(3) to be the subsequence of 3 consisting of
serial actions. Then we say that operation (Tv) occurs in (3 exactly if it occurs in serial(3). A
transaction T is said to be active in 03 provided that it is active in serial(15), and similarly for the
"live" and "orphan" definitions. Also, 0117 is defined to be serial(3)I1, and similarly for
restriction to an object.

4.4.2. Well-Formedaess
We will place very few constraints on the transaction automata and serial object automata in

our definition of a serial system. However, we will want to assume that certain simple properties
are guaranteed; for example, a transaction should not take steps until it has been created, and an
object should not respond to an operation that has not bees invoked. Such requirements are
captured by "well-formedness conditions", basic properties of sequences of external actions of
the transaction and serial object components. We define those conditions here.

First, we define "ransaction well-formedness". Let T be any transaction name. A sequence (3
of serial actions X with wansaction(x) - T is defined to be onuaLcton well-formed for T
provided the following conditions hold.

1. The first event in 0, if any, is a CREATE(T) event, and there an no other
CREATE events.

2. There is at most one REQUESTCREATE(T') event in 0 for each child T' of T.

3. Any report event for a child T' of T is preceded by REQUESTCREATE(T') in (3.
4. There is at most one report event in P3 for each child T' of T.



21

5. If a REQUESTCOMMIT event for T occurs in 13, then it is preceded by a report
event for each child T' of T for which there is a REQUESTCREATE(T') in 3.

6. If a REQUEST-COMMIT event for T occurs in 13, then it is the last event in 13.

In particular, if T is an access transaction name, then the only sequences that are transaction
well-formed for T are the prefixes of the two-event sequence
CREATE(T)REQUESTCOMMIT(T,v). For any T, it is easy to see that the set of transaction
well-formed sequences for T is nonempty, prefix-closed and limit-closed.

It is helpful to have an equivalent form of the "transaction well-formedness" definition for use
in later proofs.

Lemma S: Let 3nt be a finite sequence of actions 0 with transaction(o) = T, where t
is a single event. Then Ox is transaction well-formed for T exactly if 13 is transaction
well-formed for T and the following conditions hold.

1. If t is CREATE(T), then
a. there is no CREATE(T) event in 13.

2. If x is REQUESTCREATE(T') for a child T' of T, then
a. there is no REQUESTCREATE(T') event in 3,

b. CREATE(T) appears in 13, and

c. there is no REQUEST-COMMIT event for T in 13.
3. If it is a report event for a child T' of T, then

a. REQUEST_CREATE(T') appears in 13, and

b. there is no report event for T' in 3.
4. If t is REQUEST_COMMIT(T,v) for some value v, then

a. there is a report event in 3 for every child of T for which there is a
REQUESTCREATE event in 13,

b. CREATE(T) appears in 13, and

c. there is no REQUEST_COMMIT event for T in 13.

Now we define "serial object well-formedness". Let X be any object name. A sequence of
serial actions t with object(n) = X is defined to be serial object well-formed for X if it is a prefix
of a sequence of the form CREATE(TI) REQUESTCOMMIT(T 1 ,v1) CREATE(T 2)
REQUESTCOMMIT(T 2,v2) .... where Ti * Tj when i * j.

Lemma 6: Suppose 13 is a sequence of serial actions t with object(t) = X. If 13 is
serial object well-formed for X and T is an access to X, then 3IT is transaction well-
formed for T.

Again, we give an equivalent form of the "serial object well-formedness" definition that will
be useful in later proofs.

Lemma 7: Let 3t be a finite sequence of actions 0 with object(o) = X, where it is a
single action. Then 3t is serial object well-formed for X exactly if 3 is serial object
well-formed for X and for every finite prefix -i of 13, where 7t is a single action, the
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following conditions hold.
1. If t is CREATE(T), then

a. there is no CREATE(T) event in 3, and

b. there are no active accesses in 3.

2. If t is REQUEST_COMMIT(Tv) for a return value v, then

a. T is active in 1.

We also say that a sequence 4 of operations (T,v) with object(T) = X is serial object
well-formed for X if no two operations in 4 have the same transaction name. Clearly, if 4 is a
serial object well-formed sequence of operations of X, then perform(k) is a serial object well-
formed sequence of actions of X. Also, any serial object well-formed sequence of actions of X is
a prefix of perform(4) for some serial object well-formed sequence of operations 4.

4.5. Serial Systems
We are now ready to define "serial systems". Serial systems are composed of transaction

automata, serial object automata, and a single serial scheduler automaton. There is one
transaction automaton AT for each non-access transaction name T, and one serial object
automaton Sx for each object name X. We describe the three kinds of components in turn.

4.5.1. Transaction Automata
A transaction automaton A for a non-access transaction name T of a given system type is an

I/O automaton with the following external action signature.

Input:
CREATE(T)
REPORT_COMMIT(T',v), for every child T' of T, and every return value v
REPORT-ABORT(T'), for every child T' of T

Output:
REQUESTCREATE(T'), for every child T' of T
REQUESTCOMMIT(T,v), for every return value v

In addition, A may have an arbitrary set of internal actions. We require A to preserve
transaction well-formedness for T, as defined in Sections and. As discussed earlier, thi does
not mean that all behaviors of A are transaction well-formed, but it does mean that as long as the
environment of A does not violate transaction well-formnedness, A will not do so. Except for that
requirement, transaction automata can be chosen arbitrarily. Note that if P3 is a sequence of
actions, then PIT = fPlext(A).

Transaction automata are intended to be general enough to model the transactions defined in
any reasonable programming language. Of course, there is still work required in showing how to
define appropriate transaction automata for the transactions in any particular language. This.
correspondence depends on the special features of each language, and we do not describe
techniques for establishing such a correspondence in this paper.
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4.5.2. Serial Object Automata
A serial object automaton S for an object name X of a given system type is an I/O automaton

with the following external action signature.

Input:
CREATE(T), for T an access to X

Output:
REQUEST-COMMIT(T,v), for T an access to X

in addition, S may have an arbitrary set of internal actions. We require S to preserve serial
object well-formedness for X, as defined in Sections and.

As with transaction automata, serial object automata can be chosen arbitrarily as long as they
preserve serial object well-formedness.

Serial object automata are intended to be general enough to model variables of any of the
system-provided or user-defined types provided in any reasonable programming language. The
"semantic information" about a data object that is used in some concurrency control protocols is
obtained from the serial object automaton.

4.5.3. Serial Scheduler
There is a single serial scheduler automaton for each system type. It runs transactions

according to a depth-first traversal of the transaction tree, running sets of sibling transactions
serially. When two or more sibling transactions are available to run (because their parent has
requested their creation), the serial scheduler is free to determine the order in which they run. In
addition, the serial scheduler can choose nondeterministically to abort any transaction after its
parent has requested its creation, as long as the transaction has not actually been created. In the
context of this scheduler, the "semantics" of an ABORT(T) action are that transaction T was
never created. The scheduler does not permit any two sibling transactions to be live at the same
time, and does not abort any transaction while any of its siblings is active. We now give a
formal definition of the serial scheduler automaton.

The action signature of the serial scheduler consists of the following actions, for every
transaction name T and return value v.

Input:
REQUESTCREATE(T), T * To
REQUESTCOMMIT(T,v)

Output:
CREATE(T)
COMMIT(T), T * To
ABORT(T), T * To

REPORTCOMMIT(Tv), T * To

REPORTABORT(T), T * To

Each state s of the serial scheduler consists of six sets, denoted via record notation:
s.create_requested, s.created, s.commit_requested, s.committed, s.aborted and s.reported. The
set s.commit-requested is a set of operations. The others are sets of transactions. There is
exactly one start state, in which the set create-requested is (TO), and the other sets are empty.
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We use the notation s.completed to denote s.commited u s.aborted Thus. s.completed is not an
actual variable in the state, but rather a "derived variable" whose value is determined as a
function of the actual state variables.

The transition relation of the serial scheduler consists of exactly those triples (s', ,s) satisfying
the preconditions and yielding the effects described below, where x is the indlicated action. We
include in the effects only those conditions on the state s that may change with the action. If a
component of s is not mentioned in the effects, it is implicit that the set is the same in s' and s.

REQUESTCREATE(T), T * To
Effect:

s.create requested = s'.create-requested u IT)

REQUEST-COMMIT(T,v)
Effect:

s.commit-requested = s'.commitrequested u { (T,v))

CREATE(T)
Precondition:

T e s'.create-requested - s'.created
T e s'.aborted
siblings(T) n s'.created c s'.completed

Effect:
s.created = s'.created u (T)

COMMIT(T), T * To
Precondition:

(T,v) F s'.commit-requestec for some v
T * s'.completed

Effect:
s.committed - s'.committe4 u {T)

ABORT(T), T * To
Precondition:

T e s'.createrequested - s'.cornpleted
T e s'.created
siblings(T) n s'.created Q s'-completed

Effect:
s.aborted = s'aborted u {T)

REPORTCOMMIT(T,v), T * To
Preconditimn:

Te s'.cammined
(T,v) e s'.commit-equested
Ti s'.tpored

Effect:
s.&por - s'iqrted v (T)

REPORTABORTT, T * To
P condition:
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T e s'.aborted
T * s'.reported

Effect:
s.reported = s'.reported u (T)

Thus, the input actions, REQUESTCREATE and REQUESTCOMMIT, simply result in the
request being recorded. A CREATE action can occur only if a corresponding
REQUESTCREATE has occurred and the CREATE has not already occurred. Moreover, it
cannot occur if the transaction was previously aborted. The third precondition on the CREATE
action says that the serial scheduler does not create a transaction until each of its previously
created sibling transactions has completed (i.e., committed or aborted). That is, siblings are run
sequentially. A COMMIT action can occur only if it has previously been requested and no
completion action has yet occurred for the indicated transaction. An ABORT action can occur
only if a corresponding REQUEST-CREATE has occurred and no completion action has yet
occurred for the indicated transaction. Moreover, it cannot occur if the transaction was
previously created. The third precondition on the ABORT action says that the scheduler does
not abort a transaction while there is activity going on on behalf of any of its siblings. That is,
aborted transactions are dealt with sequentially with respect to their siblings. The result of a
transaction can be reported to its parent at any time after the commit or abort has occurred.

The following lemma describes simple relationships between the state of the serial scheduler
and its computational history.

Lemma 8: Let j3 be a finite schedule of the serial scheduler, and let s be a state such
that 13 can leave the serial scheduler in state s. Then the following conditions are true.

1.T e s.create requested exactly if T = To  or 3 contains a
REQUESTCREATE(T) event.

2. T e s.created exactly if 13 contains a CREATE(T) event.

3. (T,v) e s.commit-requested exactly if 13 contains a
REQUESTCOMMIT(T,v) event.

4. T e s.committed exactly if 13 contains a COMMIT(T) event.

5. T e s.aborted exactly if 13 contains an ABORT(T) event.

6. T e s.reported exactly if 13 contains a report event for T.

7. s.committed r s.aborted =0.

8. s.reported c s.committed u s.aborted.

The following lemma gives simple facts about the actions appearing in an arbitrary schedule of
the serial scheduler.

Lemma 9: Let 13 be a schedule of the serial scheduler. Then all of the following
hold:

1. If a CREATE(T) event appears in 03, then a REQUEST-CREATE(T) event
precedes it in 13.

2. At most one CREATE(T) event appears in 13 for each transaction T.

3. If a COMMIT(T) event appears in 13, then a REQUEST-COMMIT(T,v) event
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precedes it in 03 for some return value v.

4. If an ABORT(T) event appears in 5, then a REQUEST-CREATE(T) event
precedes it in 3.

5. If a CREATE(T) or ABORT(T) event appears in (3 and is preceded by a
CREATE(T') event for a sibling T' of T, then it is also preceded by a
completion event for T'.

6. At most one completion event appears in (3 for each transaction.

7. At most one report event appears in 3 for each transaction.

8. If a REPORT-COMMIT(T,v) event appears in 3, then a COMMIT(T) event
and a REQUESTCOMMIT(T,v) event precede it in (5.

9. If a REPORT-ABORT(T) event appears in (3, then an ABORT(T) event
precedes it "in (3.

The final lemma of this subsection says that the serial scheduler preserves the well-formedness
properties described earlier.

Lemma 10:
1. Let T be any transaction name. Then the serial scheduler preserves

transaction well-formedness for T.

2. Let X be any object name. Then the serial scheduler preserves serial object
well-formedness for X.

Proof:
1. Let (D be the set of serial actions, 0, with transaction(o) = T. Suppose P3Xt is a

finite behavior of the serial scheduler, xt is an output action of the serial
scheduler, and 310 is transaction well-formed for T. We must show that O5ncIO
is transaction well-formed for T. If x E 0 the result is immediate, so assume
that t E 0, i.e., that transaction(x) = T.

We use Lemma 5. We already know that 310 is transaction well-formed for
T. Since t is an output event, it is either a CREATE(T) event or a REPORT
event for a child of T. If x is CREATE(T), then since P3it is a schedule of the
serial scheduler, Lemma 9 implies that no CREATE(T) occurs in 3. If x is a
REPORT event for a child T' of T, then Lemma 9 implies that
REQUESTCREATE(T') occurs in 0 and no other REPORT for T' occurs in
3. Then Lemma 5 implies that fPit10 is transaction well-formed for T.

2. The argument for this case is similar.

4.S.4. Seriai Systums, Executions, Sceiwais and Bekaviors
A serial system of a give system type is the composition of a strongly compatible set of

automata indexed by the union of the set of non-access transaction names, the set of object
names and the singleton set (SS) (for "serial scheduler"). Associated with each non-access
amaction name T is a transaction automaton AT for T. Associated with each object name X is a
serial object automaton SX for X. Finally, associated with the name SS is the serial scheduler
autmmft for the given system type. When the particular serial system is undersood from
context, we will sometimes use the terms serial executions, serial schedides and serial behaviors
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for the system's executions, schedules and behaviors, respectively.

We show that serial behaviors are well-formed for each transaction and object name.
Proposition 11: If 3 is a serial behavior, then the following conditions hold.

1. For every transaction name T, 3IT is transaction well-formed for T.

2. For every object name X, 131X is serial object well-formed for X.
Proof: For non-access transaction names T, or arbitrary object names X, the result is

immediate by Proposition 4, the definitions of transaction and object automata, and
Lemma 10.

Suppose that T is an access to X. Since AIX is serial object well-formed for X,
Lemma 6 implies that PIT is transaction well-formed for T.

Unless expressly stated, we hanceforth assume an arbitrary but fixed system type and serial
system, with { ATIT a non-access in 7) as the non-access transaction automata, and (SXIXe Al as
the serial object automata.

4.6. Correctness Conditions
Now that we have defined serial systems, we can use them to define correctness conditions for

other transaction-processing systems. It is reasonable to use serial systems in this way because
of the particular constraints the serial scheduler imposes on the orders in which transactions and
objects can perform steps. We contend that the given constraints correspond precisely to the
way nested transaction systems ought to appear to behave; in particular, these constraints yield a
natural generalization of the notion of serial execution in classical transaction systems. We
arrive at a number of correctness conditions by considering for which system components this
appearance must be maintained: for the external environment To, for all transactions, or for all
non-orphan transactions.

To express these correctness conditions we define the notion of "serial correctness" of a
sequence of actions for a particular transaction name. We say that a sequence I of actions is
serially correct for transaction name T provided that there is some serial behavior y such that PIT
- YT. 0 (Recall that if T is a non-access, we have Orr = Plext(AT) and YT = Oext(AT)). If T is a
non-access transaction, serial correctness for T guarantees to implementors of T that their code
will encounter only situations that can arise in serial executions.

The principal notion of correctness that we use in our work is that of serial correctness of all
finite behaviors for the root transaction name To. This says that the "outside world" cannot
distinguish between the given system and the serial system. However, many of the algorithms
we study satisfy stronger correctness conditions. A fairly strong and possibly interesting
correctness condition is the serial correctness of all finite behaviors for all non-access transaction
names. Thus, neither the outside world nor any of the individual user transactions can
distinguish between the given system and the serial system. Note that the definition of

IGThis condition is analogous to the "view serializability" condition of [29], extended to deal with operations
other than reads and writes, and with subtransecions.
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implementation relative to all non-access transactions does not require that all the transactions
see behavior that is part of the same execution of the serial system; rather, each could see
behavior arising in a different execution.

We will also consider intermediate conditions such as serial correctness for all non-orphan
transaction names. This condition implies serial correctness for To because the serial scheduler
does not have the action ABORT(T0 ) in its signature, so To cannot be an orphan. Most of the
popular algorithms for concurrency control and recovery, including the locking algorithms in this
paper, guarantee serial correctness for all non-orphan transaction names. Our Serializability
Theorem gives sufficient conditions for showing that a behavior of a transaction-processing
system is senally correct for an arbitrary non-orphan transaction name, and can be used to prove
this property for many of these algorithms. The usual algorithms do not guarantee serial
correctness for orphans, however, in order to guarantee this as well, the use of a special "orphan
management" algorithms is generally required. Such algorithms are described and their
correctness proved in [14].

Note that each correctness condition discussed in this section can be applied to many different
kinds of transaction-processing systems. All that is needed is that the system be modelled as an
i/O automaton with appropriately named actions.

5. Simple Systems
It is desirable to state our Serializability Theorem in such a way that it can be used for proving

correctness of many different kinds of transaction-processing systems, with radically different
architectures. We therefore define a "simple system", which embodies the common features of
most transaction-processing systems, independent of their concurrency control and recovery
algorithms, and even of their division into modules to handle different aspects of transaction-
processing. A "simple system" consists of the transaction automata together with a special
automaton called the "simple database". Our theorem is stated in terms of simple systems.

Many complicated transaction-processing algorithms can be understood as implementations of
the simple system. For example, a system containing separate objects that manage locks and a
"controller" that passes information among transactions and objects can be represented in this
way, and so our theorem can be used to, prove its. correctness. Tho same strategy works for a
system containing objects that manage timestamped versions and a controller that issues
timestamps to transactions.

Later in this paper, we apply this theorem to show that every behavior of cert#in locking
systems is serially. correct for nonorphan: transactions.

5.1. Sim-pk 6- abm
Them is, a single simple database for each system type. Tl actiot sigamare of the simple

database is that of the composition of the serial scheduler with the sii"i objects:

Input:
REQLJESTCREATE(T), T o
RE ST_CM ff(T,v), T a nonkaccess

Output:
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CREATE(T)
COMMIT(T, T To
ABORT(T), T * T
REPORT-COMMIT(T,v), T *To
REPORT-ABORT(T), T * To
REQUEST_COMMIT(T,v), T an access

States of the simple database are the same as for the serial scheduler, and the initial states are
also the same, The transition relation is as follows.

REQUESTCREATE(T), T * To
Effect:

s-createjrequested = s'.create..xequested tj (T)

REQ1JEST-.COMMrT(T,v), T a non-access
Effect:

s.commit-equested = s' .commit-requested u ((Tv))I

CREATE(T)
Precondition:

T rE s'.create-equested - s'.created
Effect:

s.created = s'.created tj (TI

COMMrT(T, T * To
Precondition:

(Tv) e s'.commit~jequested for some v
T e s'.conipleted

Effect:
s.conixitted = s'.comrnitted u (T)

ABORT(T), T * T
Precondition:

T e s'.create-requested - s'.completed
Effect:

s-aborted = s'.aborted tj (T)

REPORTCOMMIT(TMv, T * To
Precondition:

T e s' .comminted
(Tv) e s'.corarnitjequested
T v s'.reported

Effect:
s-reported - s'.reported u~. (T)

REPORT _ABORT(T), T * T
Precondition:

T e s'.aborted
T v s'.reported
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Effect:
s.reported = s'.reported u {T

REQUEST_COMMIT(T,v), T an access
Precondition:

T e s'.created
for all v', (T,v') e s'.commit_requested

Effect:
s.commitrequested = s'.commit-requested u ((T,v))

The next two lemmas are analogous to those previously given for the serial scheduler.

Lemma 12: Let 03 be a finite schedule of the simple database, and let s be a state that
can result from applying [3 to the start state. Then the following conditions are true.

1. T e s.create.requested exactly if T = To  or 03 contains a
REQUESTCREATEr event.

2. T E s.created exactly if 03 contains a CREATE(T) event.

3. (T,v) e s.commit.requested exactly if 13 contains a
REQUESTCOMMIT(T,v) event.

4. T e s.committed exactly if 13 contains a COMMIT(T) event.

5. T e s.aborted exactly if 13 contains an ABORT(T) event.

6. T e s.reported exactly if 13 contains a report event for T.

7. s.committed n s.aborted =0.

8. s.reported a s.committed Q s.aborted.

Lemma 13: Let 03 be a schedule of the simple database. Then all of the following
hold:

1. If a CREATE(T) event appears in 13, then a REQUEST-CREATE(T) event
precedes it in 13.

2. At most one CREATE(T) event appears in 13 for each transaction T.

3. If a COMMIT(T) event appears in 13, then a REQUEST-COMMIT(T,v) event
precedes it in 3 for some return value v.

4. If an ABORT(T) event appears in 13, then a REQUEST-CREATE(T) event

precedes it in 13.
5. At most one completion event appears in 13 for each transaction.

6. At most one report event appears in 3 for each transaction.

7. If a REPORT-COMMIT(Tv) event appears in 1, then a COMM1T(T) event
and a REQUESTCOMMIT(T,v) event precede it in A.

8. If a REPORT-ABORT(T) event appears in 13, then an ABORT(T) event
precedes it in 3.

9. If T is an access and a REQUESTCOMMIT(T,v) event occurs in 03, then a
CREATE(T) event precedes it in 13.

.. ... .
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10. If T is an access, then at most one REQUEST-COMMIT event for T occurs in
P3.

Proof: By Lemma 12 and the simple database preconditions.

Thus, the simple database embodies those constraints that we would expect any reasonable
transaction-processing system to satisfy. The simple database does not allow CREATEs,
ABORTs, or COMMITs without an appropriate preceding request, does not allow any
transaction to have two creation or completion events, and does not report completion events that
never happened. Also, it does not produce responses to accesses that were not invoked, nor does
it produce multiple responses to accesses. On the other hand, the simple database allows almost
any ordering of transactions, allows concurrent execution of sibling transactions, and allows
arbitrary responses to accesses.

We do not claim that the simple database produces only serially correct behaviors; rather, we
use the simple database to model features common to more sophisticated systems. Such systems
will usually include a controller (perhaps with constraints of its own) and complicated objects
with concurrency control and recovery built into them. Such a system will have additional
actions for communication between these objects and the controller.

We now show that the simple database preserves transaction well-formedness.
Lemma 14: Let T be any transaction name. Then the simple database preserves

transaction-well-formedness for T.
Proof: Let 0 be the set of serial actions, 0, with transaction(O) = T. Suppose On is a

finite behavior of the simple database, it is an output action of the simple database, and
1310 is transaction-well-formed for T. We must show that OxIt10 is transaction-well-
formed for T. If x ( 0, then the result is immediate, so assume that n 6 0, i.e., that
transaction(nt) = T.

We use Lemma 5. We already know that 3R is transaction-well-formed for
T. Since x is an output event, it is either a CREATE(T) event for an arbitrary
transaction T, a REPORT event for a child of an arbitrary transaction T, or a
REQUESTCOMMIT for T, where T is an access. If n is CREATE(T), then since 13
is a schedule of the simple database, Lemma 13 implies that no CREATE(T) occurs in
3. If x is a REPORT event for a child T' of T, then Lemma 13 implies that
REQUESTCREATE(T') occurs in 13 and no other REPORT for T' occurs in P. If x is
REQUESTCOMMrT(Tv) and T is an access, then Lemma 13 implies that
CREATE(T) occurs in 1, and no REQUEST_COMMIT for T occurs in 3. Then
Lemma 5 implies that On is transaction-well-formed for T.

5.2. Simple Systems, Executions, Schedules and Behaviors
A simple system is the composition of a compatible set of auton~ata indexed by the union of the

set of non-access transaction names and the singleton set (SD) (for "simple database").
Associated with each non-access transaction name T is the transaction automaton AT for T, and
associated with the name SD is the simple database automaton for the given system type. When
the particular simple system is understood from context, we will often use the terms simple
executions, simple schedules and simple behaviors for the system's executions, schedules and
behaviors, respectively.
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Proposition 15: If 3 is a simple behavior and T is a transaction name, then PIT is
transaction-well-formed for T.

Proof: The result is immediate by Lemma 14 and the definition of transaction
automata.

The following is a basic fact about simple behaviors.

Lemma 16: Let 0 be a simple behavior. Let T and T' be transaction names, where
T' is an ancestor of T. If T is live in P and not an orphan in 3 then T' is live in P.

The Serializability Theorem is formulated in terms of simple behaviors; it provides a sufficient
condition for a simple behavior to be serially correct for a particular transaction name T.

6. The Serializability Theorem
In this section, we present our Serializability Theorem, which embodies a fairly general

method for proving that a concurrency control algorithm guarantees serial correctness. This
theorem expresses the following intuition: a behavior of a system is serially correct provided that
there is a way to order the transactions so that when the operations at each object are arranged in
the corresponding order, the result is a behavior of the corresponding serial object. The
correctness of many different concurrency control algorithms can be proved using this theorem;
in this paper, we use it to prove correctness of two locking algorithms.

This theorem is the closest analog we have for the classical Serializability Theorem of [5].
Both that theorem and ours hypothesize that there is some ordering on transactions consistent
with the behavior at each object. In both cases, this hypothesis is used to show serial
correctness. Our result is somewhat more complicated, however, because it deals with nesting
and aborts. In the first two subsections of this section, we give some additional definitions that
are needed to accommodate these complications.

6.1. Visibility
One difference between our result and the classical Serializability Theorem is that the

conclusion of our result is serial correctness for an arbitrary transaction T, whereas the classical
result essentially considers only serial correctness for To. Thus, it should not be surprising that
the hypothesis of our result does not deal with all the operations at each object, but only with
those that are in some sense "visible" to the particular transaction T. In this subsection, we define
a notion of "visibility" of one transaction to another. This notion is a technical one, but one that
is natural and convenient in the formal statements of results and in their proofs. Visibility is
defined so that, in the usual transaction-processing systems, only a transaction T' that is visible
to another transaction T can affect the behavior of T.

A transaction T' can affect another transaction T in .everal ways. First, if T' is an ancestor of
T, then T' can affect T by passing information down the transaction tree via invocations.
Second, a transaction T' that is not an ancestor of T can affect T through COMMIT actions for
T' and all ancestors of ' up to the level of the least common ancestor with T; information can
be propagated from T' up to the least common ancestor via COMMIT actions, and from there
down to T via invocations. Third, a transaction T' that is not an ancestor of T can affect T by
accessing an object that is later accessed by T; in most of the usual transaction-processing
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algorithms, this is only allowed to occur if there are intervening COMMIT actions for all
ancestors of T' up to the level of the least common ancestor with T.

Thus, we define "visibility" as follows. Let 1 be any sequence of serial actions. If T and T'
are transaction names, we say that T' is visible to T in P if there is a COMMIT(U) action in 13 for
every U in ancestors(T') - ancestors(T). Thus, every ancestor of T' up to (but not necessarily
including) the least common ancestor of T and T' has committed in 13.11

To

T

Figure 5: Visibility

Figure 5 depicts two transactions, T and T', neither an ancestor of the other. If the transactions
represented by all of the circled nodes have committed in some sequence of serial actions, then
the definition implies that T' is visible to T.

The following lemma describes elementary properties of "visibility".
Lemma 17: Let 13 be a sequence of actions, and let T, T' and T" be transaction

names.
1. If T' is an ancestor of T, then T' is visible to T in 1.
2. T' is visible to T in P if and only if T' is visible to Ica(TT') in 1.
3. If T" is visible to T' in 1 and T' is visible to T in 1, then T" is visible to T in

P.
4. If T' is live in 1 and T' is visible to T in 1, then T is a descendant of T'.

5. If T' is an orphan in A and r is visible to T in 0, then T is an orphan in3.

We use the notion of "visibility" to pick, out of a sequence of actions, a subsequence consisting
of the actions corresponding to uansctions that are visible to a given transaction T. More
precisely, if P3 is any sequence of actions and T is a transaction name, then visible(3,T) denotes
the subsequence of 13 consisting of serial actions it with hightransaction(n) visible to T in 13.

tour definition has been chosen for eas of arpument- however note ta it says that T' is visible to T even in
sone situations where T' cannot affect the behavior of T. for example when T' follows T in I.
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Note that every action occurring in visible(3,T) is a serial action, even if (3 itself contains other
actions. Note also that the use of "hightransaction" in the definition implies that if T' is visible
to T in 3 and T" is a child of T' that has an ABORT(T") in 0, then any

p REQUESTCREATE(T"), ABORT(T") and REPORTABORT(T") actions in 5 are included
in visible(3,T), but actions of T" are not. 12

The following easy lemma says that the "visible" operator on sequences picks out either all or
none of the actions having a particular transaction.

Lemma 18: Let P be a sequence of actions, and let T and T' be transaction names.
Then visible(03,T)IT' is equal to 3IT' if T' is visible to T in (, and is equal to the empty
sequence otherwise.

6.2. Event and Transaction Orders
The hypothesis of the theorem refers to rearranging the operations at each object according to a

given order on transactions. The definitions required to describe the appropriate kind of ordering
to use for this purpose are provided in this subsection.

6.2.1. Affects Order
We first define a partial order "affects(P)" on the events of a sequence 3 of serial actions. This

will be used to describe basic dependencies between events in a simple behavior, any appropriate
ordering will be required to be consistent with these dependencies.

We define the affects relation by first defining a subrelation which we call the "directly-
affects" relation and then taking the transitive closure. This decomposition will be useful to us
later, when we carry out proofs about the "affects" relation, since it is often easy to reason about
"directly-affects". For a sequence 3 of serial actions, and events 0 and x in (3, we say that 0
directly affects it in 3 (and that (0,n) e directly-affects(p)) if at least one of the following is true.

0 € and x are serial events with transaction(o) = transaction(x) and 0 precedes t in
3,13

• = REQUESTCREATE(T) and x = CREATEMT

0= REQUEST-COMMIT(T,v) and x = COMMIT(T)

• = REQUESTCREATE(r) and x = ABORT )
* = COMM1T(T) and n- = REPORT-COMMIT(T,v)

*0 - ABORT(T) and x = REPORTABORTr

Lemma 19: f 13 is a simple behavior and (0,x) e directly-affects(3), then i precedes
x in (3.

Proof: Thr first case is obvious, so we consider only the last five cases of the
definition. Transaction-well-formedness implies that there cannot be two
REQUESTCREATE(T) events in 3 for the same T, and that them cannot be two

121f T- To. visibe(0,T) corresponds to ie "commued projection" of 0 as d*sfWa (51.
13ThiS include accesses as weR as non-sace mu
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REQUEST_COMMIT events for the same transaction. Also, Lemma 13 says that 13
does not contain two completion events for the same T. Hence, in each case is the
only occurrence of the appropriate action in 3. In each case, xt is an output of the
simple database, and the simple database preconditions test for the presence of the
appropriate preceding action.

For a sequence 13 of serial actions, define the relation affects(p3) to be the transitive closure of
the relation directly-affects([3). If the pair (0,n) is in the relation affects(p3), we also say that
affects x in 3. The following is immediate.

Lemma 20: Let 13 be a simple behavior. Then affects(p3) is an irreflexive partial
order on the events in 3.14

Proof: By Lemma 19, 4 directly affects 7c in 13 only if 0 precedes 7t in ot. Therefore
affects x in 3 only if 0 precedes x in 13. Thus, affects(p3) is irreflexive and
antisymmetric. Since affects(3) is constructed as a transitive closure, the result
follows.

The conditions listed in the definition of "directly-affects" should seem like a reasonable
collection of dependencies among the events in a simple behavior. Here we try to give some
technical justification for these conditions. In the proof of the theorem, we will attempt to
extract serial behaviors from a given simple behavior. The transaction orderings used to help in
this construction will be constrained to be consistent with "affects"; this will mean that the
sequences we construct will be closed under "affects" and that the orders of events in these
sequences are consistent with "affects". Thus, if 13 is a simple behavior and (0,n) e
directly-affects(), all the al behaviors we construct that contain 7c will also contain 4, and
will precede x in each such .havior.

The first case of the "directly-affects" definition is used because we are not assuming special
knowledge of transaction behavior, if we included X and not 4 in our candidate serial behavior,
we would have no way of proving that the result included correct behaviors of the transaction
automata. The remaining cases naturally parallel the preconditions of the serial scheduler, in
each case, the preconditions of x as an action of the serial scheduler include a test for a previous
occurrence of 4, so a sequence of actions with x not preceded by 4 could not possibly be a serial
behavior.

The following lemmas contain some constraints on the kinds of events that can affect other
events in a simple behavior.

Lemma 21: Let 0 be a simple behavior and T a transaction name. Let 4) and it be
events of 13 such that 4) affects x in 13, lowtransaction(o) is a descendant of T and
lowtransaction(ri) is not a descendant of T. Then the following hold.

1. Either 4 is a completion event for T, or 4 affects a completion event for T that
affects it.

2. If no COMMIT event for T appears in D3, then 4 must be an ABORT for T.

Proof: The first case follows from the observation that if 4)' directly affects n' in 3,
lowtransaction(o') is a descendant of T and lowtransaction(Wt') is not a descendant of

14Note that the actions of a simple system are exactly the serial actions.
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T, then 0' is a completion event for T.

The second case follows from the first and the observation that no event directly
affects an ABORT event.

The proof of the next lemma is similar.

Lemma 22: Let 03 be a simple behavior and T a transaction name. Let 0 and n be
events of 13 such that 0 affects -n in 13, lowtransaction(o) is not a descendant of T and
lowtransaction(z) is a descendant of T. Then either 0 is a REQUEST_CREATE(T)
event, or 0 affects a REQUEST_CREATE(T) event for T that affects t.

As before, we extend the "affects" definition to sequences 03 of arbitrary actions by saying that
0 affects x in 13 exactly if 0 affects it in serial(o3).

6.2.2. Sibling Orders
The type of transaction ordering needed for our theorem is more complicated than that used in

the classical theory, because of the nesting involved here. Instead of just arbitrary total orderings
on transactions, we will use orderings that only relate siblings in the transaction nesting tree. We
call such an ordering a "sibling order". Interesting examples of sibling orders are the order of
completion of transactions or an order determined by assigned timestamps. We definer "sibling
orders" in this subsection.

Let SIB be the (irreflexive) sibling relation among transaction names, for a particular system
type; thus, (TT') e SIB if and only if T * T' and parent(T) = parent(T'). If R C SIB is an
irreflexive partial order then we call R a sibling order. Sibling orders are the analog for nested
transaction systems of serialization orders in single-level transaction systems. Note that sibling
orders are not necessarily total; totality is not always appropriate for our results.

A sibling order can be extended in two natural ways. First, if R is a binary relation on the set
of transaction names (such as a sibling order), then let R... be the extension of R to
descendants of siblings, i.e., the binary relation on transaction names containing (TT') exactly
when there exist transaction names U and U' such that T and T' are descendants of U and U'
respectively, and (U,U') e R. This order echoes the manner in which the serial scheduler runs
transactions when it runs siblings with no concurrency, in the order specified by I.15 Second, if
1 is any sequence of actions, then Revent(P3) is the extension of R to serial events in 13, i.e., the
binary relation on events in (3 containing (0,7t) exactly when 0 and 7c are distinct serial events in 13
with lowtransactions T and ' respectively, where (T,T') e Rum. (We use "lowtwaction" in
this definition to ensure that completion actions are ordered along with the actions of the
completingtransaction.) The following are straightforward.

Lemma 23: Let R be a sibling order. Then R.. is ar irreflixive partial order, and
for any sequence 13 of actions, Revent() is an irreflexive partial order.

Lemma 24: Let 13 be a sequence of actions and R a sibling order. Let 7c and z' be
events of 10 with lowtransactions T and T' respectively- Let AV and W' be events of
with lowuansactions U and U' respectively, where U is a descendant of T and U' is a

"5A similar definition is used in [4] and [17].
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descendant of T'. If (ic,ic') e Revent(p) then ( e') E Revent( 3).

The concept of a "suitable sibling order" describes two basic conditions that will be required of
the sibling orders to be used in our theorem. The fast condition is a technical one asserting that
R orders sufficiently many siblings, while the second condition asserts that R does not contradict
the dependencies described by the affects relation. Let 03 be a sequence of actions and T a
transaction name. A sibling order R is suitable for 3 and T if the following conditions are met.

1. R orders all pairs of siblings T' and T" that are lowtransactions of actions in
visible([3,T).

2. Revent(p3) and affects(p) are consistent partial orders on the events in visible([,T).

The use of lowtransaction in this definition will ensure that Revent imposes an order on
ABORT events in visible(3,T).

We have the following extension of the first property above.

Lemma 25: Let 03 be a simple behavior and T a transaction name. If the sibling
order R is suitable for 03 and T, then R orders all pairs of siblings T' and T" such that
descendants of each are lowtransactions of actions in visible(3,T).

We next give a technical lemma that will be useful for proving that particular sibling orders are
suitable.

Lemma 26: Let 53 be a simple behavior and let R be a sibling order satisfying the
following condition. If (r,n') e affects(p3) and lowtransaction(t) is neither an ancestor
nor a descendant of lowtransaction(ir') then (Oi') e Revent(P3). Then Revent(P3) and
affects(p) are consistent partial orders on the events of 3.

Proof: We prove this lemma by contradiction. If Revena(P 3) and affects(p3) are not

consistent, then there is a cycle in the relation Revent( 3) u affects([3), and thus there
must be some shortest cycle. Let Iro , X1, 92.. n-1, Rn = no be such a shortest cycle,

where for each i, (i,x +l ) e Revet([3) u affects(J3). In the following discussion we
will use arithmetic modulo n for subscripts, so that if i = n, xi+j is to be interpreted as
x1. We note that n > 1, since both Revnt(3) and affects([3) are irrefiexive.

Since the relation Revent(3) is acyclic, there must be at least one index i such that

(ciXi+j) e affects(P3) and (xi,xi+,) * Revent(p). Let T and T' be the lowtransactions of
ni and x;+j respectively. By the condition in the hypothesis, T is either an ancestor or
a descendant of T'. We consider two cases.

1. T is an ancestor of T'.

If the pair ( i.,i) is in affects(p), then by the transitivity of the affects
relation, (xi.t,xi~ 1) e affects(p). On the other hand, if (7ri. ,ni) c Revent(p),
then by Lemma 24, (ic.,ij+) e Revent( ) In either situation, there is a

shorter cycle in the relation Revent(p3) %j affects(p3), obtained by omitting i"
This contradicts our assumption that the cycle chosen is as short as possible.

2. T is a descendant of T'.

If the pair (ni+,ni+2) is in affects(p), then by the transitivity of the affects
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relation, (XiAg+ 2) r affects(3). On the other hand, if (t9+PI42) 6 Revent(),
then by Lemma 24, (RiXi+ 2) e Revent(). In either situation, there is a shorter

cycle in the relation Revene(P) u affects(p), obtained by omitting ii+ 1 This
contradicts the assumption that the cycle chosen is as short as possible.

In every case, we have found a contradiction; thus, the assumption that the relation
Revent(D3) u affects(p3) contains a cycle must be wrong.

6.3. The Serializability Theorem
We now present the main result. It says that a simple behavior 3 is serially correct for a

non-orphan transaction name T provided that there is a suitable sibling order R for which a
certain "view condition" holds for each object name X. The view condition says that the portion
of 13 occurring at X that is visible to T, reordered according to R, is a behavior of the serial object
Sx . In order to make all of this precise, suppose 13 is a finite simple behavior, T a transaction
name, R a sibling order that is suitable for 53 and T, and X an object name. Let 4 be the sequence
consisting of those operations occurring in 13 whose transaction components are accesses to X
and that are visible to T in 1, ordered according to Rerans on the transaction components.
(Lemma 25 implies that this ordering is uniquely determined.) Define view(03,T,RX) to be
perform(4).

Thus, view(O3,T,RX) represents the portion of the behavior 13 occurring at X that is visible to
T, reordered according to R. Stated in other words, this definition extracts from 1 exactly the
REQUEST-COMMIT actions for accesses to X that are visible to T; it then reorders those
REQUESTCOMMIT actions according to R, and then inserts an appropriate CREATE action
just prior to each REQUESTCOMMIT action. The theorem uses a hypothesis that each
view(O3,T,R,X) is a behavior of the serial object Sx to conclude that 1 is serially correct for T.

Theorem 27: (Serializability Theorem) Let 13 be a finite simple behavior, T a
transaction name such that T is not an orphan in 13, and R a sibling order suitable for 3
and T. Suppose that for each object name X, view(P3,T,R,X) e finbehs(Sx). Then 13 is
serially correct for T.

The theorem has a straightforward corollary that applies to other systems besides simple
systems.

Corollary 28: Let (BijiEl be a strongly compatible set of automata and let B =

R-i6 iBi. Suppose that all non-access transaction names T ame in the index set I and that
AT and BT are identical automata for all such T.

Let 1 be a finite behavior of B, T a transaction name that is not an orphan in 5 and R
a sibiing order suitabie for serial(p3) and T. Suppose that the following conditions lold.

1. seriaI(0) is a simple behavior.

2. For each object name X, view(serial(5),T,R,X) e finbehgSx).
Then 13 is serially corrmt for T.

We use the Serializability Theorem and its corollary later in this paper to reason about two
locking algorithm and in [AFLMW to prove correctness of timestamp algorithms. The rest of
this section contains a careful (and somewhat technical) proof of the Serializability Theorem.
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The reader who is more interested in the applications of this theorem than in its proof may wish
to go on to later sections without reading the rest of this section. Nothing in the rest of this
section is needed for understanding the rest of the paper.

6.4. Proof of the Serializability Theorem
This subsection is devoted to a proof of the Serializability Theorem. In this subsection, several

technical terms are defined, such as "ordered-visible" and "pictures". These definitions are not
used elsewhere in the paper.

The general strategy is as follows. Given a finite simple behavior 3, a non-orphan transaction
T, and a suitable sibling order R, we must produce a serial behavior Y that looks the same as [3 to
T, i.e. such that PIT = Y4T. The construction of y is done in three steps. First, visible(0,T), the
portion of 3 visible to T, is extracted from 3. Second, this sequence is reordered according to R
and affects(). (There may be many ways of doing this.) The set of all acceptable reorderings is
called ordered-visible(PJ,T). Third, we take a prefix 7 of a sequence in ordered-visible(PT) that
includes all events of T. The set of all acceptable such prefixes is called picaures(3,T,R). We
argue that y is the required serial behavior by showing separately that its projections are
behaviors of the transaction automata, of the serial object automata, and of the serial scheduler,
and then applying Proposition 2.

6.4.1. Pictures
If 13 is a finite simple behavior, T a transaction name and R a suitable sibling order for A and T,

then define ordered-visible(P,T,R) to be the set of reorderings of visible(P3,T) that are consistent
with affects(D3) U Revent( 3). Also, define pictures(P3,T,R) to be the set of all sequences y
obtained as follows. If no actions it with transaction(it) = T appear in visible(P,T) then y is the
empty sequence. Otherwise, take a sequence 8 in ordered-visible(3,T,R). Then y is the prefix of
8 ending with it, where x is the last event in 8 such that hightransaction(n) is a descendant of T.

Lemma 29: Let P be a finite simple behavior, T a transaction name and R a suitable
sibling order for P and T. Then ordered-visible(3,T,R) and pictures(P3,TR) are
nonempty sets of sequences.

Proof: By the fact that R is suitable for 3 and T.

Lemma 30: Let 13 be a finite simple befiavior, T a transaction name and R a sibling
order that is suitable for 13 and T. Let y e pictures(3,T,R). If 0 and 7t are events of 3, €
affects 7c in 13 and x is an event of y, then 0 is an event in y, and 0 precedes n in y.

Proof: Since affects(3) is the transitive closure of the finite relation
directly-affects(p3), it suffices to prove the lemma in the case that 0 directly-affects x in
P. Since x is in visible(3,T), examination of the six cases of the definition of
directly-affects(3) shows that 0 is also in visible(3,T). By definition, y is a prefix of a
sequence 6 in ordered-visible(,T,R). Since 8 is ordered consistently with affects(P), 0
precedes it in 8. Therefore, 0 is in y.

6.4.2. Behavior of Transactions
In this subsection, we show that any sequence in pictures(P,TR) projects to yield a finite

behavior of each transaction automaton.
Lemma 31: Let 13 be a simple behavior, T a transaction name and R a sibling order
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that is suitable for 03 and T. Suppose y e pictures(13,T,R). Then yIT = DiT, and )IT' is a
prefix of 1rT' for all transaction names T'.

Proof: By the definition of pictures, using Lemma 18 and the fact that the directly-
affects relation orders all events in 3 with the same transaction.

Lemma 32: Let (3 be a simple behavior, T a transaction name and R a sibling order
that is suitable for (3and T. Suppose y e pictures(P3,T,R). Then *T' is a finite behavior
of AT. for every non-access transaction name T'.

Proof: By Lemma 31 and Proposition 1.

6.4.3. Behavior of Serial Objects
Next we show that any sequence in pictures(O3,T,R) projects to yield a finite behavior of each

serial object automaton. We will use the view condition to show this; thus, we must begin by
relating the definitions of "view" and "pictures".

Lemma 33: Let 3 be a finite simple behavior, T a transaction name and R a sibling
order suitable for 3 and T. Let 8 r ordered-visible(P3,T,R). Let X be an object name.
Then one of the following two possibilities holds.

1. 8IX is identical to view(D3,T,R,X).

2. T is an access to X and 8IX is the result of inserting a single CREATE(T)
event somewhere in the sequence view(P3,T,RX).

Proof: The two constructions imply that SIX and view(3,T,RX) have identical
subsequences of REQUESTCOMMIT actions. The sequence view(P3,T,RX))
contains exactly one CREATE(U) immediately preceding each REQUESTCOMMIT
for U. Each such CREATE(U) also appears in SiX, by the preconditions for the simple
database and the definition of visibility; moreover, the definition of oFdred-visible
implies that each such CREATE(U) also appears immediately preceding the
corresponding REQUESTCOMMIT for U. Thus, the only possible difference
between 8IX and view(P,T,R,X) is that SIX might contain some extra CREATE(U)
events, without matching REQUEST._COMMIT events for U.

Since 8 is a reordering of a subsequence of visible(O3,T), any such unmatched
CREATE(U) event must have U visible to T in 3. Since no REQUEST-COMMIT for
U appears in SIX, none appears in visible(O3,T) and hence none appears in 3. Simple
database preconditions imply that no COMMIT(U) appears in 3. Therefore, it must be
that U = T, and that T is an access to X.

Lemma 34: Let 03 be a finite simple behavior, T a transaction name such that T is not
an orphan in 3, and R a sibling order suitable for 3 and T. Let y e pictures(0,T,!). Let
X be an object name. Then -OX is either a prefix of view((3,TR,X) or else is a prefix of
view(O3,T,R,X) followed by a single CREATE(T) event.

Proof: By definition of pictures(D3,T,R), y is obtained as a prefix of a sequence 8 e
onered-visible(P3,T,R). The previous lemma implies that SIX and view(O,T,RX) are
identical except that an extra CREATE(T) event might appear in SIX, and this can only
oocur in ase T is an access to X.

If SIX contains no extra CREATE events not present in view(03,TR,X), then it is
immediate by the construction of y as a prefix of 8 that ^OX is a prefix of
view(O3,T,R,X), as needed. So suppose that SIX is the same as view(P3,TR,X) except
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that 8IX contains an extra CREATE(T) event. Then the definition of pictures implies
that ^OX is the prefix of 8IX ending with the CREATE(T) event. Then -OX is a prefix of
view(3,T,RX) followed by a single CREATE(T) event.

Lemma 35: Let 13 be a simple behavior, T a transaction name, R a sibling order that
is suitable for 13 and T, and X an object name. Suppose that view(13,T,R,X) is a finite
behavior of Sx . Suppose YE pictures(3,T,R). Then YIX is a finite behavior of Sx .

Proof: By Lemma 34 and the fact that inputs to SX , as with any I/O automaton, are
always enabled.

6.4.4. Behavior of the Serial Scheduler
Next, we show that any sequence in pictures(13,T,R) is a behavior of the serial scheduler.

Lemma 36: Let 13 be a finite simple behavior, T a transaction name such that T is not
an orphan in 13, and R a sibling order that is suitable for 13 and T. Let y e
pictures(13,T,R). Then y is a finite behavior of the serial scheduler.

Proof: By definition of pictures(13,T,R), y is obtained as a prefix of a sequence 8 6
ordered-visible(13,T,R). That is, if no actions it with transaction(t) = T appear in
visible(13,T) then y is empty. Otherwise, y is the prefix of 8 ending with the last event
in 8 that has hightransaction a descendant of T.

The proof is by induction on prefixes of y, with a trivial basis. Let y'it be a prefix of
y with x a single event, and assume that y' is a behavior of the serial scheduler. If 7t is
an input action of the serial scheduler, then the fact that inputs are always enabled
implies that y is a behavior of the serial scheduler. So assume that x is an output action
of the serial scheduler. Let s' be the state of the serial scheduler after 7'. We must
show that it is enabled in the serial scheduler automaton in state s'.

1. 7t is CREATE(T'). We show that T' E s'.create-requested - s'.created -
s'.aborted and that siblings(T') r s'.created g s'.completed.

By the preconditions of the simple database and Lemma 12, a
REQUESTCREATE(T') event 4 precedes 7t in 13. Then (¢,xt) E affects(13),
so Lemma 30 implies that 0 is in y'. Thus T' e s'.create.requested.

Since only one CREATE(T') occurs in 13, no CREATE(T') occurs in y', so by
Lemma 8, T' * s'.created.

Since by Lemma 17, T' is not an orphan in 13, no ABORT(T') occurs in 13.
Thus, no ABORT(T') occurs in Y', so by Lemma 8, T' * s'.aborted.

Suppose T" is a sibling of T' that is in s'.created. Then CREATE(T") occurs
in Y, by Lemma 12. Since the order of events in y is consistent with
Revet(13 ), (T',T") * R.S. Since R. is suitable for 13 and T, (T",T') e
Run. If T is a descendant of T", then T and T' am incomparable and so
(T,T') e R... Since 8 is ordered consistently with Reent(13), 7c follows all
events 0 with hightransaction(o) a descendant of T, in 8. But then the
definition of pictures would exclude it from y, a contradiction. Therefore, T is
not a descendant of T". Since T" is visible to T in 13, a COMMIT(T") event
occurs in 13. This COMMIT(T") is in visible(13,T) and is ordered before t by
Rvent(13). Thus, COMMIT(T") precedes t in 8, and so COMMIT(T")
occurs in -'. Hence, T" e s'.completed.
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2. -isCOMMIT(T').

We show that (T',v) e s'.commit-requested for some v, and that T' e
s'.completed.

By the preconditions of the simple database, there is a value v such that a
REQUEST_COMMIT(T',v) event ¢ appears in 3. Then (O,%) 6 affects(5), so
Lemma 30 implies that 0 is in Y'. Thus (T',v) e s'.commitLrequested.
By Lemma 13, there is only one completion event for T' in 3 and hence only
one in y. Hence, T' E s'.completed.

3. x is ABORT(T').

We must show that T' e s'.create-requested - s'.completed - s'.created and
siblings(T') n s'.created Q s'.completed.

By the preconditions of the simple database, a REQUESTCREATE(T')
event 4 appears in 1. Then (0,n) e affects(13), so Lemma 30 implies that 0 is
in Y'. Thus, T' 6 s'.create-requested.

Since by Lemma 13 there is at most one completion event in 5, there can be
no completion event in Y'. Thus, T' * s'.completed.

Also T' is an orphan in 1. so by Lemma 17, T' is not visible to T in 5. Thus
CREATE(T') does not occur in visible(13,T) and so also CREATE(T') does
not occur in y. Thus, T' * s'.created.

Suppose T" is a sibling of T' that is in s'.created, so that CREATE(T")
occurs in Y'. Since the order of events in y is consistent with Revent(P3),
(T',T") 9 Ru... Since R.1. is suitable for P and T, (T",T') e Rrans. If T
is a descendant of T", then T and T' are incomparable and so (T,T') e RWs.
Since 3 is ordered consistently with Revent(P), X follows all events 4 with
highansaction(o) a descendant of T, in 6. But then the definition of pictures
would exclude x from 7, a contradiction. Therefore, T is not a descendant of
T". Since T" is visible to T in 13, a COMMIT(T") event occurs in 3. This
COMMIT(T") is in visible(5,T) and is ordered before x by Revent(). Thus,
COMMIT(T") precedes x in 8, and so COMMIT(T") occurs in y'. Hence,
r, E s'.corpleted.

4. x is a REPORTCOMMIT or REPORTABORT event for T'.
By the preconditions of the simple database and Lemma 12, a COMMIT or
ABORT event 0 appears in 5. Then (O,x) e affects(3), so Lemma 30 iplies
that # is in '. Also, by Lemma 13 there is at most one report event7in ,so
there can be no report event in Y'. Thus, T'e s'.repovd

Thus, -x is enabled in the serial scheduler in state s'.

6A.S. Prod oftIh Main Rmault
We can now tie the piems together to prove Theorem 27, the Serializability Theorem.

Proof: Let y e pictures(3,T,R). (Lemma 29 implies that this set is nonempty.)
Lemma 32 shows that yIT' is a finite behavior of AT', for all non-access transaction
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names T'. Lemma 35 shows that YX is a finite behavior of SX , for all object names
X. Lemma 36 implies that y is a finite behavior of the serial scheduler. Proposition 2
implies that y is a finite serial behavior. The definition of pictures implies that -OT =
3rr

It is easy to see that the serial behavior y constructed to show serial correctness for To also has
the property that Y1T = 3IT for all T visible to To in 3. Thus, if the view condition holds for a
suitable sibling order for T0 , then there exists a single serial schedule that looks like 3 to all the
transactions that commit to the top level.

7. Dynamic Atomicity
In this section, we specialize the ideas developed in the preceding section to the particular case

of locking algorithms. Locking algorithms serialize transactions according to a particular sibling
order, the order in which transactions complete. Also, locking algorithms can be described
naturally using a particular decomposition into a "generic object" automaton for each object
name that handles the concurrency control and recovery for that object, and a single "generic
controller" automaton that handles communication among the other components. We define the
completion order and the appropriate system decomposition in this section.

We then give a variant of the Serializability Theorem, specialized for algorithms using the
completion order and based on the given system decomposition. We call this theorem the
Dynamic Atomicity Theorem, because it is stated in terms of a property of generic objects called
"dynamic atomicity", which we also define in this section.

Finally, we define another condition called "local dynamic atomicity"; this is a convenient
sufficient condition for proving dynamic atomicity.

7.1. Completion Order
A key property of locking algorithms is that they serialize transactions according to their

completion (commit or abort) order. This order is determined dynamically. If 0 is a sequence of
events, then we define completion(p) to be the binary relation on transaction names containing
(T,T') exactly if T and T' are siblings and one of the following holds.

1. There are completion events for both T and T' in 0, and a completion event for T
precedes a completion event for T'.

2. There is a completion event for T in 3, but there is no completion event for T' in P.
The following is easy to see.

Lemma 37: Let P3 be a simple behavior. Then completion(P) is a sibling order.

The next few lemmas show that the completion order is suitable.

Lemma 38: Let 3 be a simple behavior and let R = completion(P). Let xc and it' be
distinct events in 03 with lowtransactions T and T' respectively. If T is neither an
ancestor nor a descendant of T', and (t,x') e affects(P), then (t,x') e Revent(J3).

Proof: Since T is neither an ancestor nor a descendant of T', there are siblings U and
U' such that T is a descendant of U and T' is a descendant of U'. Since it affects it' in
',by Lemmas 21 and 22, there must be events , and 0' in 0 such that 0 is a completion
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event for U, 0' is REQUEST_CREATE(U'), either 7t = or else (xo) e affects(p),
and (0,0') and (0',x') are both in affects(p3). Thus, 0 occurs before 0' in 1.

The simple database preconditions and transaction well-formedness imply that any
completion event for U' in P must occur after the unique REQUESTCREATE(U')
event. Thus 5 contains a completion event 0 for U, which precedes 0', which in turn
precedes any completion event for U'. Thus (U,U') e R = completion(p3), and
therefore (it,x') e Revent( ).

Lemma 39: Let 13 be a simple behavior and let R = completion(p3). Then Revent(p)
and affects(p3) are consistent partial orders on the events of 13.

Proof: Immediate by Lemmas 38 and 26.
Lemma 40: Let 13 be a simple behavior and T a transaction name. If T' and T" are

siblings that are lowtransactions of actions in visible(3,T) then either (T',T") or
(T",T') e completion(3).

Proof: Since T' and T" are distinct siblings, T is not a descendant of both T' and
T". Without loss of generality, we will assume that T is not a descendant of T'. Note
that therefore the least common ancestor of T and T' must be an ancestor of parent(T').
There is an event x in visible(3,T) such that lowtransaction(t) = T'. Thus either ic is a
completion event for T' or hightransaction(n) must be T'. In the case where
hightransaction(n) = T', we must have that T' is visible to T in 13, and thus (since T' is
not an ancestor of T) that 5 contains a COMMIT(T') event. Thus in either case
contains a completion event for T', and so completion(p3) orders T' and T".

Now we can conclude that the completion order is suitable.

Lemma 41: Let 13 be a finite simple behavior and T a transaction name. Then
completion(p3) is suitable for 1 and T.

Proof: By Lemmas 40 and 39.

7.2. Generic Systems
In this subsection, we give the system decomposition appropriate for describing locking

algorithms. We will formulate such algorithms as "generic systems", which are composed of
transaction automata, "generic object automata" and a "generic controller". The general structure
of the system is the same as that given in Figure 1, for serial systems.

The object signature for a generic object contains more actions than that for serial objects.
Unlike the serial object for X, the corresponding generic object is responsible for carrying out
the concurrency control and recovery algorithms for X, for example by maintaining lock tables.
In order to do this, the automaton requires information about the completion of some of the
transactions, in particular, those that have visited that object. Thus, a generic object automaton
has in its signature special INFORMCOMMIT and INFORM-ABORT input actions to inform
it about the completion of (arbitrary) transactions.



45

7.2.1. Generic Object Automata
A generic object automaton G for an object name X of a given system type is an I/O

automaton with the following external action signature.

Input:
CREATE(T), for T an access to X
INFORM_COMMIT._AT(X)OF(T), for T any transaction
INFORMABORTAT(X)OF(T), for T any transaction

Output:
REQUESTCOMMIT(T,v), for T an access to X and v a value

In addition, G may have an arbitrary set of internal actions. G is required to preserve "generic
object well-formedness", defined as follows. A sequence 3 of actions xt in the external signature
of G is said to be generic object well-formed for X provided that the following conditions hold.

1. There is at most one CREATE(T) event in 13 for any transaction T.

2. There is at most one REQUESTCOMMIT event in 03 for any transaction T.

3. If there is a REQUEST_COMMT event for T in 0, then there is a preceding
CREATE(T) event in 13.

4. Them is no transaction T for which both an INFORM_COMMr1_AT(X)OF(T)
event and an INFORMABORTAT(X)OF(T) event occur.

5. If an INFORMCOMMITAT(X)OF(T) event occurs in 1 and T is an access to X,
then there is a preceding REQUESTCOMMIT event for T.

As with previous well-formedness properties, we have an alternative form of the definition.

Lemma 42: Let 37t be a finite sequence of actions in the external signature of a
generic object for object name X, where x is a single event. Then 37t is generic object
well-formed for X exactly if 0 is generic object well-formed for X and the following
conditions hold.

1. If ic is CREATE(T), then
a. there is no CREATE event for T in 1'.

2. If xt is INFORM_COMMT_AT(X)OFM, then
a. if T is an access to X, then there is a REQUESTCOMMIT for T in

P', and
b. there is no INFORM_ABORTAT(X)OF(T) in 1'.

3. If x is INFORMABORT_AT(X)OF(T), then
a. there is no INFORM_COMM1T_AT(X)OF(T) in 1'.

4. If x is REQUEST_COMMIT(T,v), then
a. there is a CREATE(T) in P', and

b. there is no REQUEST_COMMIT for T in 1'.
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7.2.2. Genric Controller
There is a single generic controller for each system type. It passes requests for the creation of

subtransactions to the appropriate recipient, makes decisions about the commit or abort of

transactions, passes reports about the completion of children back to their parents, and informs

objects of the fate of transactions. Unlike the serial scheduler, it does not prevent sibling

transactions from being active simultaneously, nor does it prevent the same transaction from

being both created and aborted. Rather, it leaves the task of coping with concurrency and

recovery to the generic objects.

The generic controller is a very nondeterministic automaton. It may delay passing requests or
reports or making decisions for arbitrary lengths of time, and may decide at any time to abort a
transaction whose creation has been requested (but that has not yet completed). Each specific
implementation of a locking algorithm will make particular choices from among the many
nondeterministic possibilities. For instance, Moss [21] devotes considerable effort to describing
a particular distributed implementation of the controller that copes with node and communication
failures yet still commits a subtransaction whenever possible. Our results apply a fortiori to all
implementations of the generic controller obtained by restricting the nondeterminism.

The generic controller has the following action signature.

Input:
REQUESTCREATE(T)
REQUESTCOMMITT,v)

Output:
CREATE(T)
COMMIT(T), T * To

ABORT(T), T * To

REPORTCOMMIT(T,v), T * To
REPORTABORT(T), T * To

INFORM_COMMITAT(X)OF(T), T * To

INFORMABORTAT(X)OF(T), T * To

All the actions except the INFORM actions play the same roles as in the serial scheduler. The
INFORM-COMMIT and INFORM-ABORT actions pass information about the fate of
transactions to the generic objects.

Each state s of the generic controller consists of six sets: s.create_equested, s.created,
s.commit-requested, s.committed, s.aborted and s.reported. The set s.commiLrequested is a set
of (transaction,value) pairs, and the others are sets of transactions. All are empty in the start
state except for create-requested, which is (TO). Define s.completed = s.committed u s.aborted.
The transition relation is as follows.

REQUESTCREATE(T)
Effect:

s.create_requested = s'.createrequested u [T)

REQUESTCOMMIT(T,v)
Effect:

s.commit-requested = s'.commit.requested u { (Tv))



47

CREATE(T)
Precondition:

T e s'.create-requested - s'.created
Effect:

s.created = s'.created Q {T

COMMIT(T), T * T0
Precondition:

(T,v) e s'.corntit-requested for some v
T e s'.completed

Effect:
s.committed = s'.committed u {T)

ABORT(T), T * To
Precondition:

T r= s'.create-requested - s'.compieted
Effect:

s.aborted = s'.aborted u {T)

REPORTCOMMIT(T,v), T To
Precondition:

T e s'.committed
(T,v) e s'.commitsrequested
T e s'.reported

Effect:
T e s.reported

REPORTABORT(T), T * To
Precondition:

T e s'.aborted
T e s'.reported

Effect:
T e s.reported

INFORMCOMMITAT(X)OFM, T * O
Precondition:

T e s'.committed

INFORMABORTAT(X)OF(T), T * To
Precondition:

T e s'.aborted

Lemma 43: Let 0 be a finite schedule of the generic coniroller, and let s be a state
such that 0 can leave the generic controller in state s. Then the following conditions
are true.

1. T is in s.create..equested exactly if T = To or 13 contains a
REQUESTCREATE(T) event.

2. T is in s.created exactly if ft contains a CREATE(T) event.

3. (Tv) is in s.commitrequested exactly if 1 contains a
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REQUESTCOMMIT(T,v) event.

4. T is in s.committed exactly if 0 contains a COMMIT(T) event.

5. T is in s.aborted exactly if 13 contains an ABORT(T) event.

6. T is in s.reported exactly if 13 contains a report event for T.

7. s.committed n s.aborted = 0.
8. s.reported Q s.committed v s.aborted.

Lemma 44: Let 3 be a schedule of the generic controller. Then all of the following
hold:

1. If a CREATE(T) event appears in 13, then a REQUEST-CREATE(T) event
precedes it in 3.

2. At most one CREATECT) event appears in 03 for each transaction T.

3. If a COMMIT(T) event appears in 1, then a REQUEST-COMMrr(T,v) event
precedes it in 15 for some return value v.

4. If an ABORT(T) event appears in P3, then a REQUEST-CREATE(T) event
precedes it in 15.

5. At most one completion event appears in 13 for each transaction.

6. At most one report event appears in 13 for each transaction.

7. If a REPORT-COMMIT(T,v) event appears in 13, then a COMMIT(T) event
and a REQUESTCOMMT(T,v) event precede it in 13.

8. If a REPORT-ABORT(T) event appears in 13, then an ABORT(T) event
precedes it in 13.

7.2.3. Generic Systems
A generic system of a given system type is the composition of a strongly compatible set of

automata indexed by the union of the set of non-access transaction names, the set of object
names and the singleton set (GC) (for "generic controller"). Associated with each non-access
transaction name T is a transaction automaton AT for T, the same automaton as in the serial
system. Associated with each object name X is a generic object automaton Gx for X. Finally,
associated with the name GC is the generic controller automaton for the system type.

The external actions of a generic system are called generic actions, and the executions,
schedules and behaviors of a generic system are called generic executions, generic schedules and
generic bhaviors, respectively. The following proposition says that generic behaviors have the
approprim well-formedness properties. Its proof is analogous to 'that of the similar result for
serial behaviors.

Proposition 45: If 13 is a generic behavior, then the following conditions hold.
I. For every transaction name T, 1T is transaction well-formed for T.

2. For every object name X, P3IG x is generic object well-formed for X.

The following result says that if the INFORM events are removed from any generic behavior,
the result is a simple behavior.
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Proposition 46: If 13 is a generic behavior then serial(p3) is a simple behavior.

Proof: By a straightforward induction on the length of 13.16

The following variant of the corollary to the Serializability Theorem applies to the special case
where R is the completion order and the system is a generic system.

Proposition 47: Let 13 be a finite generic behavior, T a transaction name that is not
an orphan in 13 and R = completion(p). Suppose that for each object name X,
view(seria(13),T,R,X) E finbehs(Sx). Then 13 is serially correct for T.

Proof: Immediate from Corollary 28, using Lemma 41, Proposition 46, and the
observation that completion(p) = completion(serial(p3)).

7.3. Dynamic Atomicity
Now we define the "dynamic atomicity" property for a generic object automaton; roughly

speaking, it says that the object satisfies the view condition using the completion order as the
sibling order R. This restatement of the view condition as a property of a generic object is very
convenient for decomposing correctness proofs for locking algorithms: the Serializability
Theorem implies that if all the generic objects in a generic system are dynamic atomic, then the
system guarantees serial correctness for all non-orphan transaction names. All that remains is to
show that the generic objects that model the locking algorithms of interest are dynamic atomic.

This proof structure can be used to yield much stronger results than just the correctness of the
locking algorithms in this paper. As long as each object is dynamic atomic, the whole system
will guarantee that any finite behavior is serially correct for all non-orphan transaction names.
Thus, we are free to use an arbitrary implementation for each object, independent of the choice
of implementation for each other object, as long as dynamic atomicity is satisfied. For example,
a simple algorithm such as Moss's can be used for most objects, while a more sophisticated
algorithm permitting extra concurrency by using type-specific information can be used for
objects that are "hot spots". (That is, objects that are very frequently accessed.) The idea of a
condition on objects that guarantees serial correctness was introduced by Weihl [27] for systems
without transaction nesting.

Let G be a generic object automaton for object name X. We say that G is dynamic atomic for a
given system type if for all generic systems Sof the given type in which G is associated with X,
the following is true. Let 1 be a finite behavior of S, R = completion(p3) and T a transaction
name that is not an orphan in 13. Then view(serial(13),T,R,X) e finbehs(Sx).

Theorem 48: (Dynamic Atomicity Theorem) Let Sbe a generic system in which all
generic objects are dynamic atomic. Let 1 be a finite behavior of S Then P3 is serially
correct for every non-orphan transaction name.

Proof: Immediate from Proposition 47 and the definition of dynamic atomicity.

16An alternative proof can be formulated in terms of the notion of implementation, using a possibilities mapping.
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7.4. Local Dynamic Atomicity
In the previous subsection, we showed that to prove that a generic system guarantees serial

correctness for non-orphan transactions it is enough to check that each generic object automaton
is dynamic atomic. In this subsection, we define another property of generic object automata
called "local dynamic atomicity", which is a convenient sufficient condition for showing
dynamic atomicity. For each generic object automaton G, dynamic atomicity is a local condition
in that it only depends on G. However, the form in which the condition is stated may be difficult
to check directly: one must be able to verify a condition involving
view(serial(6),T,completion(6),X) for all finite behaviors 13 of all generic systems containing
G. Local dynamic atomicity is defined more directly in terms of the behaviors of G.

First we introduce some terms to describe information about the the status of transactions that
is deducible from the behavior of a particular generic object. Let G be a generic object
automaton for X, 3 a sequence of external actions of G, and T and T' transaction names. Then T
is locally visible to T' ia 6 if P contains an INFORM_COMMIT_AT(X)OF(U) event for every U
in ancestors(T) - ancestors(T'). Also, T is a local orphan in 13 if an
INFORMABORTAT(X)OF(U) event occurs in 3 for some ancestor U of T. The following are
obvious facts about local visibility and local orphans.

Lemma 49: Let G be a generic object automaton for X. Let 13 be a sequence of
external actions of G, and let T, T' and T" be transaction names. If T is locally visible
to T' in 13, and T' is locally visible to T" in 13, then T is locally visible to T" in 1.

Lemma S0: Let G be a generic object automaton for X. Let D be a generic object
well-formed sequence of external actions of G, and let T and T' be transaction names.
If T is locally visible to T' in 13, and T' is not a local orphan in 13, then T is not a local
orphan in P.

We now justify the names introduced above by showing some relationships between the local
properties defined above and the corresponding global properties.

Lemma 51: Let 13 be a behavior of a generic system in which generic object
automaton G is associated with X. If T is locally visible to T'in DIG then T is visible to
T' in 1. Similarly, if T is a local orphan in 1IG then T is an orphan in P.

Proof: These are immediate consequences of the generic controller preconditions,
which imply that any INFORMABORTAT(X)OF(T) event in 1 must be preceded
by an ABORT(T) event and that any INFORM_COMM1T_AT(X)OF(T) is preceded
by COMMIT(T).

Next, we define a relation on accesses to the generic object G to describe some information
about the completion order that is deducible from the behavior of a particular generic object.
Given a sequence 13 of external actions of a generic object automaton for X, we define a binary
relation local-completion(3) on accesses to X. Namely, (U,U') E local-completion(p) exactly if
U * U', 13 contains REQUESTCOMMIT events for both U and U', and U is locally visible to
U' in P', where P' is the longest prefix of P not containing the given REQUESTCOMMIT
event for U'.

Lemma 52: If 13 is a generic object well-formed sequence of external actions of a
generic object automaton for X, then local-completion(P3) is an irreflexive partial order
on accesses to X.

Proof: We must show that local-completion(p3) is irreflexive, antisymmetric and
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transitive. Irreflexivity follows immediately from the definition.

Suppose that (TT') and (T',T) are both in local-completion(3). Then 03 contains a
REQUEST-COMMIT event for each of T and T', and generic object well-formedness
implies that there is only one of each. Since (T,T') e local-completion(3), T is locally
visible to T' in the longest prefix 13' of 13 not containing the REQUESTCOMMIT for
T'. Therefore, an INFORM_COMMIT for T occurs in 3', and generic object well-
formedness implies that the REQUEST-COMMIT for T precedes the
REQUEST-COMMIT for T' in 3. But the same reasoning implies that the
REQUEST-COMMIT for T' precedes the REQUEST-COMMIT for T in 3, a
contradiction. Therefore, local-completion(P3) is antisymmetric.

Now suppose (TT') and (T',T") are both in local-completion(P3). Let 3' and 3" be
the longest prefixes of 13 not containing a REQUEST-COMMIT for T' and not
containing a REQUESTCOMMIT for T', respectively. As in the argument above, the
REQUEST-COMMIT for T' must precede the REQUEST-COMMIT for T" in 3, so
3' is a prefix of 3". Since T is locally visible to T' in 3', T is locally visible to T' in
3", and since T' is locally visible to T" in 3", Lemma 50 implies that T is locally
visible to T" in 3". Thus (T,T") e local-completion(p3).

The relationship between the local-completion order and the true completion order in a generic
system is as follows.

Lemma 53: Let 13 be a behavior of a generic system in which generic object
automaton G is associated with X. Let T and T' be accesses to X. If (T,T') 6

local-completion(31G), and T' is not an orphan in 13, &,en (T,T') e Rrans, where R f
completion(P3).

Proof: By definition of local-completion(P3), 31G contains a REQUESTCOMMIT
event for T', and T is locally visible to T' in P'IG, where 3' is the longest prefix of 3
not containing the REQUEST_COMMIT for T'. Lemma 51 implies that T is visible to
T' in 3'.

Since 3 is well-formed, it contains at most one REQUESTCOMMIT event for T',
and so 3' does not contain a REQUEST-COMMIT event for T'. By the controller
preconditions, and Lemma 44, 3' does not contain a COMMT(T') event. Since 31G is
generic object well-formed, 3' contains a CREATE(T') event. Since T' is not an
orphan in 13, 3' does not contain an ABORT(T') event. Therefore, T' is live in 3'.

Let U and U' denote the siblings such that T is a descendant of U, and T' is a
descendant of U'. Since T is visible to T' in 3, 3' contains a COMMIT(U) event. By
Lemmas 46 and 16, U' must be live in 3'. Since 13' contains a return for U, and no
return for U', it follows that (U,U') e R. Therefore (TT') e Rum.

Now we give a definition to describe how to reorder the external actions of a generic object
automaton according to a given local-completion order. Suppose 13 is a generic object well-
formed sequence of external actions of a generic object automaton for X and T is a transaction
name. Let local-pictures(3,T) be the set of sequences defined as follows. Let Z be the set of
operations occurring in 3 whose transactions are locally visible to T in 13. Then the elements of
local-pictures(P3,T) are the sequences of the form perform(4), where is a total ordering of Z in
an order consistent with the partial order local-completion(p3) on the transaction components.
The following is straightforward from the definitions.
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Lemma 54: If 03 is a generic object well-formed sequence of external actions of a
generic object automaton for X and T is a transaction name, then every element of
local-pictures(0,T) is serial object well-formed.

We are finally ready to define "local dynamic atomicity". We say that generic object
automaton G for object name X is locally dynamic atomic if whenever 3 is a finite generic object
well-formed behavior of G and T is a transaction name that is not a local orphan in 13, then
local-pictures(P3,T) z finbehs(Sx). That is, the result of reordering a behavior of G according to

the given local-completion order is a finite behavior of the corresponding serial object
automaton. The main result of this subsection says that local dynamic atomcity is a sufficient
condition for dynamic atomicity.

Theorem 55: If G is a generic object automaton for object name X that is locally
dynamic atomic then G is dynamic atomic.

Proof: Let Sbe a generic system in which G is associated with X. Let 3 be a finite
behavior of S, R = completion(p3) and T a transaction name that is not an orphan in 3.
We must prove that view(simple(p3),T,R,X) e finbehs(Sx). By definition,
view(simple(p3),T,R,X) = perform(4), where 4 is the sequence of operations occurring
in 13 whose transactions are visible to T in 1, arranged in the order given by Rtrans on
the transaction component.

Let y be a finite sequence of actions consisting of exactly one
INFORMCOMMITATX)OF(U) for each COMMIT(U) that occurs in 3. Then fry
is a behavior of the system S, since each action in y is an enabled output action of the
generic controller, by Lemma 43. Then POG is a behavior of G, and Lemma 45
implies that it is generic object well-formed.

Since INFORMCOMMITAT(X)OF(U) occurs in P3YG if and only if COMMIT(U)
occurs in 13, an access T' to X is visible to T in 13 if and only if it is locally visible to T
in D3"IG. Therefore, the same operations occur in view(simple(P),T,R,X) and in any
sequence in local-pictures(P3^G,T). To show that view(simple(p3),T,R,X) e
local-picturs(P13G,T), we must show that they can appear in the same order.

If T' is any access that is locally visible to T in D3)G, then T' is visible to T in 13, so
Lemma 17 implies that T' is not an orphan in 03, and hence not an orphan in fry. Also,
note that completion(f3t) = completion(p3) = R. Then Lemma 53 implies that if accesses
that are locally visible to T in NG are ordered by 1ocal-completion(o3 G), they are
also ordered in the same way by Rmns.

Thus, the sequence 4 can be obtained by taking those operations (T',v') such that
REQUESTCOMMIT(T',v') occurs in N3€IG and T' is locally visible to T in P3"G, and
arranging them in an order that is consistent with local-completion(P3)G) on the
transaction component. Thus, perform(4) is an element of local-pictures(P3"OG,T).
Since G is locally dynamic atomic, perform(4) is a finite behavior of SX , as required.

8. Restricted Types of Serial Objects
The correctness of the two algorithms in this paper depends on semantic information about the

types of serial object automata used in the underlying serial system. For example, Moss's
algorithm provides special treatment for "read accesses", i.e., accesses that do not modify the
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state of the object. Also, our general commutativity-based locking algorithm uses information
about commutativity of certain operations in order to determine the orders in which these
operations are permitted to occur. In this section, we provide the appropriate definitions for
these concepts.

We first define the important concept of "equieffectiveness" of two sequences of external
actions of a serial object automaton. Roughly speaking, two sequences are "equieffective" if
they can leave the automaton in states that are indistinguishable to the outside world. We then
define the notion of "commutativity" required for our algorithm. Finally, we define "read
accesses"; that is, we state the properties of read accesses that are required for the correctness of
Moss's algorithm.

8.1. Equieffectiveness
Now we define "equieffectiveness" of finite sequences of external actions of a particular serial

object automaton Sx . The definition says that the two sequences can leave SX in states that
cannot be distinguished by any environment in which Sx can appear. Formally, we express this
indistinguishability by requiring that SX can exhibit the same behaviors as continuations of the
two given sequences.

Let X be an object name, and recall that Sx is a particular serial object automaton for X. Let 13
and 3' be finite sequences of actions in ext(Sx). Then 13 is equieffective to 0' if for every
sequence y of actions in ext(Sx) such that both 13' and 3'y are serial object well.formed, 3y
beh(SX) if and only if [3'y e beh(Sx). Obviously, equieffectiveness is a symmetric relation, so
that if 13 is equieffective to 3' we often say that 13 and 3' are equieffective. Also, any sequence
that is not serial object well-formed is equieffective to all sequences. On the other hand, if 13 and
3' serial object well-formed sequences and 13 is equieffective to 3', then if 13 is in beh(Sx), P3'

must also be in beh(Sx).

The following proposition says that extensions of equieffective sequences are also
equieffective.

Proposition 56: Let X be an object name. Let 3 and 13' be equieffective sequences
of actions in ext(Sx). Let y be a finite sequence of actions in ext(Sx). Then P3y is
equieffective to P3'".

Equieffectiveness is not an equivalence relation, but we do have a restricted transitivity result.

Lemma 57: Let X be an object name, and let 4, T1 and be three serial object well-
formed finite sequences of operations of X, such that every operation in T1 appears in
either 4 or (. If perform(4) is equieffective to perform(T), and perform(fl) is
equieffective to perform(Q, then perform(4) is equieffective to perform( ).

Proof: Suppose perform(k) and perform(TI) are equieffective, and that perform0'l)
and perform(€) are equieffective. Let y be a sequence of external actions of Sx such
that perform(4)y and perform( )y are serial object well-formed, and suppose that
perform(4)y is a behavior of Sx.We show that perform( )y is a behavior of Sx .

By the definition of serial object well-formedness, y must be either of the form
perform(€c) or perform()CREATE(T), where the first components of all the operations
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in t (and T as well, if appropriate) are distinct from the first components of all the
operations in k and . By the condition on il, the first components of all the operations
in r (and T as well, if appropriate) are distinct from the first components of the
operations in T1. Thus, perform()3 is serial object well-formed. The definition of
equieffectiveness than implies that perform(T1)y is a behavior of SX , and therefore that
perform( )y is a behavior of Sx , as needed.

A special case of equieffectiveness occurs when the final states of two finite executions are
identical. The classical notion of serializability uses this special case, in requiring concurrent
executions to leave the database in the same state as some serial execution of the same
transactions. However, this property is probably too restrictive for reasoning about an
implementation, in which details of the system state may be different following any concurrent
execution than after a serial one. (Relations may be stored on different pages, or data structures
such as B-trees may be configured differently.) Presumably, these details are irrelevent to the
perceived future behavior of the database, which is an "abstraction" or "emergent property" of
the implementation. The notion of equieffectiveness formalizes this indistinguishability of
different implementation states.

8.2. Commutativity
We now define an appropriate notion of commutativity for operations of a particular serial

object automaton. 17 Namely, we say that operations (T,v) and (T',v') commute, where T and T'
are accesses to X, if for any sequence of operations 4 such that both perform(4(T,v)) and
perform(4(T',v')) are serial object well-formed behaviors of Sx , then perform(4(T,v)(T',v')) and
perform(k(T',v')(T,v)) are equieffective serial object well-formed behaviors of S.

Example: Consider an object Sx representing a bank account. The accesses to X are of the
following kinds:

* balance?: The return value for this access gives the current balance.

" deposit$a: This increases the balance by $a. The only return value is "OK".

" wirhdraw_$b: This reduces the balance by $b if the result will not be negative. In
this case the return value is "OK". If the result of withdrawing would be to cause an
overdraft, then the balance is left unchanged, and the return value is "FAIL".

For this object, it is clear that two serial object well-formed schedules that leave the same final
balance in the account are equieffective, since the result of each access depends only on the
current balance. We claim that if T and T ae accesses of kind depohit$a ad deposit.$b, then
the operations (T,"OK") and (T',"OK") commute. To see this, suppose that perform (T,"OK"))
and perform(4(T',"OK")) are serial object well-fomed behaviors of Sx . This implies that 4 is
serial object well-fornd and contains no operatio with frst component T or T'. Therefore, 0 =
perfonw*(T,"OK"V,"OK")) and ft 'W perform(4(T',"OK"XT,"OK")) are serial object well-
formed. Also, since perfom(,) is a behavior of Sx , so are 0 and P', sce a deposit can always

17This dfii is moM complicau thn dug often used in the classical theory, because we fd widh types
whose acsCS maW be sncifzed ID be Paial and nondeneiistic, that is, the return value may be uadefined or
multiply-defimd from a given stae.
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occur. Finally, the balance left after each of 13 and P' is $(x+b+b'), where $x is the balance after
perform(l), so 13 and 13' are equieffective.

Also, if T and T' are distinct accesses of the kind withdraw_$a and withdraw_$b respectively,
then we claim that (T,"OK") and (T',"FAIL") commute. The reason is that if
perform(k(T,"OK")) and perform(4(T',"FAIL")) are both serial object well-formed behaviors
then we must have a S x < b, where $x is the balance after perform(t). Then both
perform(t(T,"OK')(T',"FAlL")) and perforn((T',"FAIL")(T,"OK")) are serial object well-
formed behaviors of Sx that result in a balance of $(x - a), and so are equieffective.

On the other hand, if T and T' are distinct accesses of the kind withdraw_$a and withdraw_$b
respectively, then (T,"OK") and (T',"OK") do not commute, since if perform(4) leaves a balance
of $x, where max(a,b) < x < a+b, then perform(4(T,"OK")) and perform(4(T',"OK")) can be
serial object well-formed behaviors of Sx , but perform(4(T,"OK")(T',"OK")) is not a behavior,
since after perform(4(T,"OK")) the balance left is $(x - a), which is not sufficient to cover the
withdrawal of $b.

A consequence of the definition of commutativity is the following extension to sequences of
operations.

Proposition 58: Suppose that 4 and 4' are finite sequences of operations of X such
that each operation in 4 commutes with each operation in '. If 4 is a finite sequence
of operations of SX such that perform(44) and perform(t') are serial object well-
formed behaviors of SX , then perform(44') and perform(k' ) are equieffective serial
object well-formed behaviors of SX .

8.3. Transparent Operations
We now define the essential property that we will require of any read access. We say that an

operation (T,v) at X is transparent if for any finite sequence 13 of external actions of SX such that
Operform(T,v) is a serial object well-formed behavior of SX , Pperform(T,v) and 0 are
equieffective behaviors of Sx . Thus, a transparent operation does not affect the later behavior of
the object automaton. The following simple extension shows that any subsequence consisting of
transparent operations can be removed from a behavior, resulting in a behavior equieffective to
the original one.

Proposition 59: Let T1 be a finite serial object well-formed sequence of operations of
X such that perform(TI) is a behavior of SX , and let 4 be a subsequence of J such that
every operation in l-4 is transparent. Then perform(T) and perform(t) are
equieffective serial object well-formed behaviors of S×.

It is easy to see that transparent operations commute.

Proposition 60: Let (T,v) and (T',v') be transparent operations of X such that T
T'. Then (T,v) commutes with (T',v').

Proof: Suppose 4 is a finite sequence of operations of X such that perform(4(T,v))
and perform(4(T',v')) are serial object well-formed behaviors of Sx . Then no
operation in 4 has T or T' as first component, and all the operations in 4 have distinct
first components. Therefore perform(4(T,v)(T',v')) and perform(4(T',v')(T,v)) are
serial object well-formed sequences of external actions of Sx . Now perform((T,v))
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and perform(4) are equieffective, since (T,v) is transparent. Since
perform(k)perform(T',v') is a behavior of SX, the definition of equieffectiveness
implies that perform(4(T,v))perfrm(T',v') = perform(4(Tv)(T',v')) is also a behavior
of SX. Similarly, the fact that (T',v') is transparent implies that perform(4(T',v')(Tv))
is a behavior of SX. By Proposition 59, each of perform( (T,v)(T',v')) and
perform(k(T',v')(T,v)) is equieffective to perform(4). Lemma 57 now shows that they
are equieffective to each other, as required.

9. General Commutativity-Based Locking
In this section, we present our general commutativity-based locking algorithm and its

correctness proof. The algorithm is described as a generic system. The system type and the
transaction automata are assumed to be fixed, and are the same as those of the given serial
system. The generic controller automaton has already been defined. Thus, all that remains is to
define the generic obicts. We define the appropriate objects here, and show that they are
dynamic atomic.

9.1. Locking Objects
For each object name X, we describe a generic object automaton Lx (a "locking object"). The

object automaton uses the commutativity relation between operations to decide when to allow
operations to be performed.

Automaton Lx has the usual signature of a generic object automaton for X. A state s of Lx has
components s.created, s.commit-requested and s.intentions. Of these, created and commit-
requested are sets of transactions, initially empty, and intentions is a function from transactions
to sequences of operations of X, initially mapping every transaction to the empty sequence X.
When (T,v) is a member of s.intentions(U), we say that U holds a (T,v)-lock. Given a state s and
a transaction name T we also define the sequence total(sT) of operations by the recursive
definition total(s,T0) = s.intentions(T0), total(s,T) = total(s,parent(T))s.intentions(T). Thus,
total(s,T) is the sequence of operations obtained by concatenating the values of intentions along
the chain from To to T, in order. When T is an access to X, perform(total(s,T)) is the behavior of
a schedule of Sx .

The transition relation of LX is given by all triples (s',Ir,s) satisfying the following pre- and
postconditions, given separately for each x. As before, any component of s not mentioned in the
postconditions is the same in s as in s'.

CREATE(T), T an access to X
Effect:

s.created = s'.created u IT)

INFORM-COMMIT..AT(X)OF(T), T * To
Effect:

s.intentions(T) = X
s.intentions(parent(T)) = s'.intentions(parent(T))s'.intentions(T)
s.intentions(U) - s'.intentions(U) for U * T, parent(T)

INFORMABORTAT(X)OF(T), T * To
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Effect:
s.intentions(U) = X, U e descendants(T)
s.intentions(U) = s'.intentions(U), U E descendants(T)

REQUESTCOMMIT(T,v), T an access to X
Precondition:

T e s'.created - s'.commit-requested
(T,v) commutes with every (T',v') in s'.intentions(U),
where U E ancestors(T)

perform(total(s',T)(T,v)) e finbehs(Sx)
Effect:

s.commit-requested = s'.commit-requested u {T)
s.intentions(T) = s'.intentions(T)(T,v)
s.intentions(U) = s'.intentions(U) for U * T

Thus, when an access transaction is created, it is simply added to the set created. When Lx is
informed of a commit, it passes any locks held by the transaction to the parent, appending them
at the end of the parent's intentions list. When Lx is informed of an abort, it discards all locks
held by descendants of the transaction. A response containing return value v to an access T can
be returned only if the access has been created but not yet responded to, every holder of a
"conflicting" (that is, non-commuting) lock is an ancestor of T, and perform(T,v) can occur in a
move of SX from a state following the behavior perform(total(s',T)). When this response is
given, T is added to commit-requested and the operation (T,v) is appended to intentions(T) to
indicate that the (T,v)-lock was granted. It is easy to see that Lx is a generic object i.e, that Lx
has the correct external signature and preserves generic object well-formedness.

The following lemma says that the ordering of operations in the "total" sequences does not
change during execution of Lx.

Lemma 61: Let 3132 be a finite generic object well-formed schedule of Lx, such
that 031 can leave Lx in state s' and (s', 2 ,s) is an extended step of Lx. Let T1, T2 and
U and V be transaction names. Suppose (Tl,vl) precedes (T2,v2) in total(s',U) and
(T2 ,v2) occurs in total(s,V). Then (Tl,v1) occurs in total(s,V) and precedes (T2,v2) in
total(s,V).

The locking object Lx is quite nondeterministic; implementations1 8 of Lx can be designed that
restrict the nondeterminism in various ways, and correctness of such algorithms follows
immediately from the correctness of Lx, once the implementation relationship has been proved,
for example by using a possibilities mapping.

As a trivial example, consider an algorithm expressed by a generic object that is just like Lx
except that extra preconditions are placed on the REQUESTCOMM1T(T,v) action, say
requiring that no lock at all is held by any non-ancestor of T. Every behavior of this generic
object is necessarily a behavior of Lx, although the converse need not be true. That is, this
object implements Lx and so is dynamic atomic.

ISRecall that "implementation" has a formal definition, given in Section. The "implementation" relation only
relats external behaviors, but allows complete freedom in the choice of automaton states.
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For another example, note that our algorithm models both choosing a return value, and testing
that no conflicting locks are held by non-ancestors of the access in question, as preconditionson
the single REQUESTCOMMIT event for the access. Traditional database management
systems have used an architecture in which a lock manager first determines, whether an access is,
to proceed or be delayed, and only later is the response determined. In such an architecture, it is
infeasible to use the return value in determining which activities conflict. We can model such an
algorithm by an automaton in which the granting of locks by the lock manager is an internal
event whose precondition tests for conflicting locks using a "conflict table" in which a lock for
access T is recorded as conflicting with a lock for access T' whenever there are any return values
v and v' such that (T,v) does not commute with (T',v'). Then we would have a
REQUESTCOMMIT action whose preconditions include that the return value is appropriate
and that a lock had previously been granted for the access. If we do this, we obtain an object that
can be shown to be an implementation of Lx, and therefore its correctness follows from that of
Lx.

Many slight variations on these algorithms can be considered, in which locks are obtained at
different times, recorded in different ways, and tested for conflicts using different relations; so
long as the resulting algorithm treats non-commuting operations as conflicting, it should not be
hard to prove that these algorithms implement Lx, and so are correct. Such implementations
could exhibit much less concurrency than Lx, because they use a coarser test for deciding when
an access may proceed. In many cases the loss of potential concurrency might be justiied by the
simpler computations needed in each indivisible step.

Another aspect of our algorithm that one might wish to change in an implementation is the
complicated data structure maintaining the "intentions", and the corresponding need to replay all
the operations recorded there when determining the response to an access. In the next section, we
will consider an algorithm that is able to summarize all these lists of operations in a stack of
versions of the serial object, at the cost of reducing available concurrency by using a conflict
relation in which all updates exclude one another.

9.2. Correctness Proof
In this subsection, we prove several lemmas about Lx, leading to the theorem that Lx is

dynamic atomic.

We first introduce some tem to describe the information Lx uses about visibility and about
the completion order of transactions. If 0 is a sequence of actions of Lx, T is an access to X, and
T' is an ancestor of T, we say that T is lock-visible to T' in 03 if 0 contains a subsequence 13'
consisting of an INFORMCOMMITAT(X)OFU) event for every U r ancestQrs(T)
ancestors(T'), arranged in ascending order (so the INFORM_COMMIT for parent(U) is preceded
by that for U). We also define a binary relation lock-completion(p) on accesses to X, where
(U,U') e lock-completion(p3) exactly if U * U', 03 contains REQUEST-COMMIT events for both
U and U', and U is lock-visible to U' in 13', where 13' is the longest prefix of 03 not containing the
given REQUEST-COMMIT event for U'. The following simple lemma relates lock-visibility
and the lock-completion order to local visibility and the local completion order. It follows
immediately from the definitions.

Lemma 62: Let 03 be a generic object well-formed sequence of actions of Lx. Then
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lock-completion(p3) is an irreflexive partial order.
Lemma 63: Let [3 be a sequence of actions of Lx and T and T' transaction names. If

T is lock-visible to T' in 3 then T is locally visible to T' in 13. Also lock-completion(3)
is a subrelation of local-completion(p3).

The following lemma, which can be proved by a straightforward induction, shows which locks
are held by a transaction after a schedule of Lx.

Lemma 64: Let 13 be a finite generic object well-formed schedule of Lx. Suppose
that 3 can leave Lx in state s.

1. Let T be an access to X such that REQUEST1_COMM1T(T,v) occurs in 13 and
T is not a local orphan in 13, and let T' be the highest ancestor of T such that T
is lock-visible to T' in 13. Then (T,v) is a member of s.intentions(T').

2. If (T,v) is an element of s.intendons(T') then T is a descendant of T',
REQUEST-COMMIT(T,v) occurs in 13, and T' is the highest ancestor of T to
which T is lock-visible in 13.

We now give the key lemma, which shows that certain sequences of actions, extracted from a
generic object well-formed behavior of Lx, are serial object well-formed behaviors of Sx . The
second conclusion, that certain such sequences are equieffective, is needed to carry out the
induction step of the proof of this lemma.

It is helpful to have an auxiliary definition. Suppose 03 is a generic object well-formed finite
behavior of Lx. Then a set Z of operations of X is said to be allowable for 13 provided that for
each operation (T,v) that occurs in Z, the following conditions hold.

1. (T,v) occurs in 13.
2. T is not a local orphan in 13.
3. If (T',v') is an operation that occurs in 13 such that (T',T) e lock-completion(p3),

then (T',v') E Z.

Lemma 65: Let 3 be a generic object well-formed finite behavior of Lx and let Z be
an allowable set of operations for 3. Let R = lock-completion(p3).

1. If 4 is a total ordering of Z that is consistent with R on the transaction
components, then perform(4) e finbehs(Sx).

2. If 4 and il are both total orderings of Z such that each is consistent with R on
the transaction component, then perform(4) and perform(r1) are equieffective.

Proof: We use induction on the size of the set Z. The basis, when Z is empty, is
trivial. So let k 1 and suppose that Z contains k operations and the lemma holds for
all allowable sets of k - 1 operations. Let 4 be a total ordering of Z that is consistent
with R on the transaction component. Let (T,v) be the last operation in 4, and let Z' =
Z - ((T,v)). Let 4' be the sequence of operations such that k = k'(T,v). Then Z' is an
allowable set of k - I operations, since Z is, and there is no operation (Tv') in Z such
that (TT') e R. Also, 4' is a total ordering of Z' consistent with R.

Let 13' be the longest prefix of 03 not containing REQUESTCOMMIT(T,v), and let
s' be the (unique) state in which 0' can leave Lx. Let 1 = total(s',T), and let 2 be
some total ordering that is consistent with R, of the operations in Z' - ;1. Lemma 64,
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applied to 3', implies that the operations in , are exactly those (T',v') that occur in 13'
such that (T',T) e lock-completion(13'). But by the definition of lock-completion and
the generic object well-formedness of 13, (T',T) e lock-completion(p3') if and only if
(T',T) E lock-completion(13) = R. Thus the operations in 1 are exactly those (T',v')
that occur in 13 such that (T',T) e R. Suppose (Tl,v1) and (T2v2) are two operations in
1 such that (T1,T2 ) e R. By the definition of lock-completion, T1 is lock-visible to T2

in the longest prefix 131 of 13 that does not include REQUESTCOMMIT(T 2,v2 ).
Applying Lemma 64 to 13t , (Tl,v1) is in the intentions list of an ancestor of T2 in the
state s, reached by 13k , and by the effects of REQUESTCOMMIT(T 2,v2), (Tl,v1)
precedes (T2,v2) in total(s2,T2), where s2 is the state reached by
131REQUESTCOMMIT(T 2,v2). By Lemma 61, (Tl,v1) precedes (T2,v2) in 1. We
conclude that the order of operations in 1 is consistent with R.

If (T',v') and (T",v") are operations in 1 and 2 respectively, then we claim that
(T",T') E R. For if (T",T') e R, then since (T',T) e R, by Lemma 62 we have also
(T",T) e R. Then the characterization of C, above implies that (T",v") occurs in C1, a
contradiction. This claim implies that 142 is also a total ordering of Z' consistent with
R. The induction hypothesis thus shows that perform(k') and perform( 14 2) are
equieffective serial object well-formed behaviors of SX.

We show that (T,v) commutes with every operation (T",v") in k. There are two
possibilities: either REQUESTCOMMIT(T",v") precedes
REQUESTCOMMIT(T,v) in 13, or vice versa. In the first case, let U denote the
highest ancestor of T" to which T" is lock-visible in P'. By Lemma 64, (T",v") E
s'.intentions(U), but by definition of 2, U is not an ancestor of T. Therefore, by the
preconditions for REQUEST COMM1T(T,v), which is enabled in state s', we must
have that (T,v) commutes with (T",v"). In the second case, let 5" be the longest
prefix of 13 not containing REQUESTCOMMIT(T",v"), and let t be the state in
which 13" leaves Lx. Also let U denote the highest ancestor of T to which T is lock-
visible in 13", so that (T,v) e t.intentions(U). Now U is not an ancestor of T", as
otherwise (T,T") r R, contradicting the assumption that (T,v) is the last operation in .

Thus by the preconditions for REQUEST-COMMIT(T",v"), (T",v") commutes with
(T,v).

By the preconditions for REQUESTCOMMIT(T,v), which is enabled in state s',
perform(total(s',T)(T,v)) = perform( 1(T,v)) is a finite behavior of SX , and it is clearly
serial object well-formed, since 13 is generic object well-formed. We also showed
above that perform( l 2 ) is a serial object well-formed behavior of Sx . Since (T,v)
commutes with every operation in 2, we have by Proposition 58 that
perform( l; 2(T,v)) is a serial object well-formed behavior of Sx . Since we saw that
perform( lk2 ) is equieffective to perform(4'), and since perform(4) = perform(4'(T,v))
is clearly serial object well-formed, the definition of equieffectiveness implies that
perform(4) is a behavior of Sx . This completes the proof that perform(k) is a serial
object well-formed behavior of Sx .

Now let T1 be any other total ordering of Z that is consistent with R on the transaction
component. Let 7II and 712 be the sequences of actions such that Ti = 11(T,v)1T2. Then
T1112 is a total ordering of Z' consistent with R. The induction hypothesis shows that

"-"Lm a l i i l i i
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perform(lI T12) is a serial object well-formed behavior of Sx and that it is equieffective
to perform(4'). Therefore, by Proposition 56, perform(7l 1l2(Tv)) is equieffective to
perform(4).

Part 1 applied to 7 implies that perform(rT) is a serial object well-formed behavior of
SX; therefore, its prefix perform(r7 1 (T,v)) is also a serial object well-formed behavior
of Sx.

By the characterization above for 1, every operation in l has transaction
component that precedes T in R. Thus, since il is consistent with R, every operation in
- is contained in ill, Thus, every operation in 112 is contained in 2' and so (T,v)
commutes with every operation in T12. Therefore perform(7l) = perform(ill(T,v)112) is
equieffective to perform(711 12(T,v)), by Proposition 58.

Since perform(11) is equieffective to perform( 1lr12(T,v)) and perform(fl 1 rj2 (T,v)) is
equieffective to perform(t), Lemma 57 implies that perform(il) is equieffective to
perform(4), completing the proof.

Now we can prove that locking objects are locally dynamic atomic.

Proposition 66: LX is locally dynamic atomic.
Proof: Let 13 be a finite generic object well-formed behavior of Lx and let T be a

transaction name that is not a local orphan in P3. We must show that local-pictures(13,T)
Q finbehs(Sx). So let Z be the set of operations occurring in 13 whose transactions are
locally visible to T in 13. Let 4 be a total ordering of Z consistent with
local-completion(13) on the transaction components. We must prove that perform(k) is
a behavior of Sx.

We claim that Z is allowable for 13. To see this, suppose that (T',v') is an operation
that occurs in Z. Then (T',v') occurs in 13. Since T' is locally visible to T in 13 and T is
not a local orphan in 3, Lemma 50 implies that T' is not a local orphan in 13. Now
suppose that (T",v") is an operation that occurs in 13 and (T",T') e
lock-completion(13). Then T" is lock-visible to T' in 13, and hence, by Lemma 63, is
locally visible to T' in P. Therefore, (T",v") is in Z.

We also claim that the ordering of 4 is consistent with lock-completion(13) on the
transaction components. This is because the total ordering of t is consistent with
local-completion(13), and Lemma 63 implies that locks-completion(p3) is a subrelation
of local-completion(13).

Lemma 65 then iniplies that perform(4) is a behavior of SX, as needed.

Finally, we can show the main result of this section.

Theorem 67: Lx is dynamic atomic.
Proof: By Proposition 66 and Theorem 55.

An immediate consequence of Theorems 67 and the Dynamic Atornicity Theorem is that if Sis
a generic system in which each generic object is a locking object, then .Vis serially correct for all
non-orphan transaction names.
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10. Moss's Algorithm
In this section, we present Moss's algorithm for read-update locking [21] and its correctness

proof. Once again, the algorithm is described as a generic system, and all that needs to be
defined is the generic objects. We define the appropriate objects here, and show that they
implement locking objects. It follows that they are dynamic atomic.

10.1. Moss Objects
For each object name X, we describe a generic object automaton Mx (a "Moss object"). The

automaton Mx maintains a stack of "versions" of the corresponding serial object SX, and
manages "read locks" and "update locks".

The construction of MX is based on a classification of all the accesses to X as either read
accesses or update accesses. We assume that this classification satisfies the property that every
operation (T,v) of a read access T is transparent. If 4 is a sequence of operations of X, we let
update(4) denote the subsequence of 4 consisting of those operations whose first components are
update accesses. Proposition 59 implies that if perform(4) is a serial object well-formed
behavior of SX , then perform(update(4)) is also a serial object well-formed behavior of SX , and
perform(update(4)) is equieffective to perform(4).

MX has the usual action signature for a generic object automaton for X. A state s of MX has
components s.created, s.commit-requested, s.update-lockholders and s.read-lockholders, all sets
of transactions, and s.map, which is a function from s.update-lockholders to states of the serial
object automaton Sx . We say that a transaction in update-lockholders holds an update-lock, and
similarly that a transaction in read-lockholders holds a read-lock. The start states of Mx are
those in which update-lockholders = {TO) and map(T0 ) is a start state of the serial object Sx , and
the other components are empty.

If Uis a finite set of transactions such that for all T and T' in IX either T is an ancestor of T' or
vice versa, then we define least(_ to be the unique transaction in Uthat is a descendant of all
transactions in I/ Some of the following actions contain preconditions in which the function
"least" is applied to the set s'.update-lockholders. In case least(s'.update-lockholders) is
undefined, the precondition is assumed to be false. 19

The transition relation of MX is as follows.

CREATE(T), T an access to X
Effect:

s.created = s'.created u {T)

INFORM_COMM1T_AT(X)OF(T), T * To
Effect:

if T e s'.update-lockholders
then

s.update-lockholders = (s'.update-lockholders - [T)) u (parent(T)}

191n fact, in all states s' that arise in executions having generic object wel-formed behaviors, least(s'.update-
lockholders) is defined.
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s.map(parent(T)) = s'.map(T)
s.map(U) = s'.map(U) for U e s.update-lockholders - (parent(T))

if T e s'.read-lockholders
then s.read-lockholders = (s'.read-lockholders - {T)) U (parent(T)}

INFORMABORTAT(X)OF(T), T * TO
Effect:

s.update-lockholders = s'.update-lockholders - descendants(T)
s.read-lockholders = s'.read-lockholders - descendants(T)
s.map(U) = s'.map(U) for all U e s.update-lockholders

REQUESTCOMMIT(T,v), T a read access to X
Precondition:

T 6 s'.created - s'.commit-requested
s'.update-lockholders Q ancestors(T)
there is a state t of Sx such that

(s'.map(least(s'.update-lockholders)),perform(T,v),t) is a move of Sx
Effect:

s.commit-requested = s'.commit-requested u IT)
s.read-lockholders = s'.read-lockholders u (T)

REQUESTCOMMIT(T,v), T an update access to X
Precondition:

T e s'.created - s'.commit-requested
s'.update-lockholders u s'.read-lockholders Q ancestors(T)
there is a state t of Sx such that

(s'.map(least(s'.update-lockholders)),perform(T,v),t) is a move of Sx
Effect:

s.commit-requested = s'.commit-requested Q (T)
s.update-lockholders = s'.update-lockholders u (T)
s.map(T) = t
s.map(U) = s'.map(U) for all U e s.update-lockholders - {T)

When an access transaction is created, it is added to the set created. When Mx is informed of
a commit, it passes any locks held by the transaction to the parent, and also passes any serial
object state stored in map. When Mx is informed of an abort, it discards all locks held by
descendants of the transaction. A response containing return value v to an access T can be
returned only if the access has been created but not yet responded to, every holder of a
conflicting lock is an ancestor of T, and perform(T,v) can occur in a move of SX from the state
that is the value of map at least(update-lockholders). When this response is given, T is added to
commit-requested and granted the appropriate lock. Also, if T is a update access, the resulting
state is stored as map(T), while if T is a read access, no change is nade to map.

It is easy to see that Mx is a generic object, i.e, that it has the correct external signature and
preserves generic object well-formedness. The following is also easy to prove, using induction
of the length of a schedule.

Lemma 68: Let 03 be a finite schedule of Mx. Suppose that D can leave Mx in state
s. Suppose T e s.update-lockholders and T' e s.read-lockholders u s.update-
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lockholders. Then either T is an ancestor of T' or else T' is an ancestor of T.

Note that it is permissible to classify all accesses as update accesses. The Moss object
constructed from such a classification implements exclusive locking. Thus, the results we obtain
about Moss objects also apply to exclusive locking as a special case.

10.2. Correctness Proof
In this subsection, we show that MX is dynamic atomic. In order to show this, we produce a

possibilities mapping from MX to LX as defined in Section , thereby showing that Mx
implements LX. Note that MX is not describable as a simple special case of LX: the two
algorithms maintain significantly different data structures. Nevertheless, a possibilities mapping
can be defined.

We begin by defining the mapping f. Let f map a state s of MX to the set of states t of LX that
satisfy the following conditions.

I. s.created = t.created.

2. s.commit-requested = t.commit-requested.

3. s.read-lockholders is exactly the set of transaction names T such that t.intentions(T)
contains a read operation.

4. s.update-lockholders is exactly the set of transaction names T such that
t.intentions(T) contains an update operation, together with T0 .

5. For every transaction name T, perform(update(total(tT))) is a finite behavior of SX
that can leave Sx in the state s.map(T'), where T' is the least ancestor of T such
that T' e s.update-lockholders.

Lemma 69: f is a possibilities mapping from MX to Lx.

Proof: The proof involves checking the conditions in the definition of a possibilities
mapping. These checks are completely straightforward, but numerous and very
tedious. For completeness, we include the details here, although the reader will
probably not wish to read them.

It is easy to see that to E f(s0), where so and to are start states of Mx and LX,
respectively. Let s' and t' be reachable states of MX and LX, respectively, such that t'
e f(s'). Suppose (s',n,s) is a step of MX. We produce t such that (t',nr,t) is a step of

Lx and t e f(s). We proceed by cases.
1. x - CREATE(T), T an access to X.

Since x is an input of Lx, xt is enabled in state t'. Choose t so that (t',it,t) is a

step of Lx. We show that t e f(s).

The effects of it as an action of MX and Lx imply that s.created = s'.created u
(T) and t.created = t'.created u (T). Moreover, all of the other components
of s or t are identical to the corresponding components of s' or t', respectively.
Since t' e f(s'), we have s'.created = t'.created, so that s.created = t.created,
thus showing the first condition in the definition of f. The other conditions
hold in s and t because they hold in s' and t' and none of the relevant
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components are modified by it.

2. x = INFORMCOMMIT-AT(X)OF(U).

Since it is an input of Lx, t is enabled in state t'. Choose t so that (t',t,t) is a
step of Lx. We show that t e f(s).

The first and second conditions hold in s and t because they hold in s' and t'
and none of the relevant components are modified by 7t.

The effects of it as an action of Lx imply that t.intentions(W) =
t'.intentions(W) unless W e (U,parent(U)}, t.intentions(parent(U)) =
t'.intentions(parent(U))t'.intentions(U), and t.intentions(U) -X. We consider
two cases.

a. t'.intentions(U) contains a read operation.

Then the set of transaction names T such that t.intentions(T) contains a
read operation is exactly the set of T such that t'.intentions(T) contains
a read operation, with U removed and parent(U) added. Since t' e
f(s'), s'.read-lockholders is exactly the set of transaction names T such
that t'.intentions(T) contains a read operation; in particular, U e
s'.read-lockholders. The effects of t as an action of Mx imply that
s.read-lockholders = s'.read-lockholders - (U) u (parent(U)}. Thus,
s.read-lockholders is exactly the set of T such that t.intentions(T)
contains a read operation.

b. t'.intentions(U) does not contain a read operation.

Then the set of transaction names T such that t.intentions(T) contains a
read operation is exactly the set of T such that t'.intentions(T) contains
a read operation. Since t' r f(s'), s'.read-lockholders is exactly the set
of transaction names T such that t'.intentions(T) contains a read
operation; in particular, U E s'.read-lockholders. The effects of t as
an action of Mx imply that s.read-lockholders = s'.read-lockholders.
Thus, s.read-lockholders is exactly the set of T such that
t.intentions(T) contains a read operation.

This shows the third condition. The proof of the fourth condition is analogous
to that for the third condition.

Finally, fix some transaction T and let T' be the least ancestor of T such that
T' e s.update-lockholders. The discussion is divided into subcases,
depending on the relation between T and U in the transaction tree.

a. U is an ancestor of T.

Then total(t,T) = total(t',T). Let T" be the least ancestor of T in
s'.update-lockholders. Since t' e f(s'), perform(urdate(total(t',T))) is
a finite behavior of Sx that can leave Sx in the state s'.map(T").

If U = T", then the effects of it as an action of Mx imply that s.update-
lockholders = s'.update-lockholders - {T") u (parent(T")), so T' =

parent(T"). Then s.map(T') = s.map(parent(T")) = s'.map(T").

If U T" and U r s'.update-lockholders, then by definition of T", U
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is a strict ancestor of T". Then s.map(T") = s'.map(T") and T" =T,
so again s.map(T') = s'.map(T").

If U * T" and U is not in s'.update-lockholders, tht~a s.update-
Iockholders = s'. update- lockholders and s.map = s'.map; thus, T" = T
and so s.map(T') = s'.map(T").

In each case, we have shown that s.map(T') = s'.map(T"); therefore,
perform(update(total(t,T))) is a finite behavior of Sx that can leave Sx
in the state s.map(T').

b. U is not an ancestor of T, but parent(U) is an ancestor of T.

If U e s'.update-lockholders then Lemma 68 implies that no
transaction in ancestors(T) - ancestors(parent(U)) can be in s'.update-
lockholders Q s'.read-lockholders. The effects of nt as an action of
Mx therefore show that T' = parent(U). These effects also show that
s.map(parent(U)) = s'.map(U). Since t' e f(s'), t'.intentions(W) must
be empty for all W e ancestors(T) - ancestors(parent(U)). By the
effects of 7c as an action of Lx, U~ntentions(W) = t'.intentions(W)
unless W equals U or parent(U), so t.intentions(W) is empty for all W
e ancestors(T) - ancestors(parent(U)). Thus, total(t,T) =
total(t,parent(U)). The effects of 7t: as an action of LX also show that
total(t,parent(U)) = total(t',U), so that total(t,T) = total(t',U). Since t'
e f(s') and U is the least ancestor of U in s'. update- lockholders,
perform(update(total(t',U))) is a finite behavior of Sx that can leave
Sx in state s'.map(U). The equalities we have proved show that
perforin(update(total(t,T))) is a finite behavior of Sx that can leave Sx
in state s.map(T').

If U e s'.update-lockholders then s.update-lockholders = s'.update-
lockholders and s.map = s'.map. Thus, T' is the least ancestor of T in
5' .update-lockholders, and s.map(T') = s'.map(T'). Since t' 6 ~s)
there ame no update operations in t' .intentions (U). Then the effects of
it as an action of Lx imply that update(total(tT)) = update(total(t',T)).
Thus, performn(update(total(t,T))) = perform(update(total(t',T))), which
is, by the fact that t' e f(s'), a finite behavior of SX that can leave Sx
in state s'.map(T') = s.map(T').

c. parent(U) is not an ancestor of T.

The effects of nt ensure that T' is the least ancestor of T in s'.update-
lockholders, s.map(T') = s'.map(T') and total(t,T) = total(t',T). The
result follows immediately from the fact that t' e f(s').

This completes the demonstration of the fifth condition.

3.7it = INFORMABORTAT(X)OF(U).

Since xt is an input of Lx, it is enabled in state t'. Choose t so that (t',it,t) is a
step of Lx. We show that t e f(s).

The first and second conditions hold in s and t because they hold in s' and t'
and none of the relevant components are modified by xt.
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The effects of x as an action of LX imply that t.intentions(W) =
t'.intentions(W) unless W is a descendant of U, and t.intenrtions(W) = X if W
is a descendant of U. Thus, the set of transaction names T such that
t.intentions(T) contains a read operation is exactly equal to the set of T such
that t'.intentions(T) contains a read operation with the descendants of U
removed. Similarly the effects of xr as an action of Mx show that s.read-
lockholders equals s'.read-lockholders with the descendants of U removed.
Since t' r f(s'), the set of transaction names T iuch that t'.intentions(T)
contains a read operation equals s'.update-lockholders. Thus, the set of T
such that t.intentions(T) contains a read operation equals s.update-lockholders,
as required. This shows the third condition. The proof of the fourth condition
is analogous to that for the third condition.

Finally, fix some transaction T and let T' be the least ancestor of T such that
T' e s.update-lockholders. The discussion is divided into subcases,
depending on the relation between T and U.

a. U is an ancestor of T.

Then total(t,T) = total(t',parent(U)). The effects of n as an action of
Mx imply that s.update-lockholders = s'.update-lockholders -

descendants(U) and s.map(W) = s'.map(W) if W is not a descendant of
U. Thus, T' is an ancestor of parent(U), and in fact must be the least
ancestor of parent(U) in s'.update-lockholders. Since t' = f(s'),
perform(update(total(t',parent(U)))) is a finite behavior of Sx that can
leave Sx in state s'.map(T'). Thus, perform(update(total(tT))) is a
finite behavior of Sx that can leave Sx in state s.map(T').

b. U is not an ancestor of T.
The effects of it ensure that T' is the least ancestor of T in s'.update-
lockholders, s.map(T') = s'.map(T') and total(t,T) = total(t',T). The
result follows immediately from the fact that t' e f(s').

This completes the demonstration of the fifth condition.

4. it = REQUESTCOMMIT(U,u), U a read access to X.
We first show that is enabled as an action of LX in state t'. That is, we must
show that U e t'.created - t'.commit-requested, that (U,u) commutes with
every (V,v) in t'.intentions(U'), where U' e ancestors(U), and that
perform(total(t',U)(U,u)) is in finbehs(SX).

Since t' e f(s'), t'.created - s'.created and t'.commit-requested = s'.commit-
requested. Since x is enabled as an action of Mx in state s', we have that U 6
s'.created - s'.commit-requested. Therefore, U e t'.created - t'.commit-
requested.

Suppose (in order to obtain a contradiction) that there exist U', V and v such
that U' E ancestors(U), (V,v) is in t'.intentions(U'), and (U,u) does not
commute with (V,v). Since U is a read access and read accesses are
transparent, Proposition 60 implies that either U = V or else V is a update
access. Lemma 64 implies that U' is an ancestor of V, so that we cannot have
V = U. Therefore, V is an update access. Since V is a update access and (V,v)
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is in t'.intentions(U'), the fact that t' e f(s') shows that U' E s'.update-
lockholders, Thus, since z is enabled in state s', U' is an ancestor of U. This is
a contradiction; thus, we have shown that if U' is not an ancestor of U and
(V,v) is in t'.intentions(U'), then (U,u) and (V,v) commute.

Finally, let U'= least(s'.update-lockholders). Since t is enabled in s', U' must
be an ancestor of U and is thus the least ancestor of U in s'.update-
lockholders. Therefore, the fact that t' e f(s') implies that
perfrm(update(total(t',U))) is a finite behavior of Sx that can leave $X in
state s'.map(U'). Since x is enabled in s', there is a move of Sx with behavior
perform(U,u) starting from state s'.map(U'). Thus,
perform(update(total(t',U)))perform(U,u) is a behavior of Sx . Since
pdrform(update(total(t',U))) is equieffective to perform(total(t',U)),
perform(total(t',U))perform(U,u) - perform(total(t',U)(U,u)) is in
finbehs(Sx), since it is serial object well-formed.

Thus, it is enabled as an action of LX in state t'. Choose t such that (t',it,t) is a
step of Lx. We show that t E f(s).

The effects of x imply that s.created = s',created, t.created = t'.created,
s.commit-requested = s'.commit-requested u (U) and t.comniit-requested =
t'.commit-requested u (U). Since t' e f(s'), we have t'.created - s'.created
and t'.commit-requested - s'.commit-requested. Thus, s.created t.created
and s.commit-requested = t.commit-requested, so the first and second
conditions hold.

The effects of x imply that s.read-lockholders - s'.read-lockholders u (U),
t.intentions(U) = t'.intentions(U)(U,u), and t.intentions(W) = t'.intentions(W)
for W * U. Since t' e f(s'), s'.read-lockhokers is exactly the set of transaction
names T such that t'.intentions(T) contains a read operation. Then s.read-
lockholders = s'.eadmlockhold-us v (U), which is exactly the set of
transaction names T such that t.intentions(T) contains a read operation, so the
third condition holds.

It is easy to see that the fourth condition holds in s and t, because it holds in s'
and t' and the only relevant component that is modified is that t.intentions(U)
= t'.intentions(U)(U,u), and (U,u) is a read operation.

For the final condition, consider any transaction T. Note that
perform(update(total(t,T))) = perform(update(total(t',T))) and s.map - s'.map.
Since the fifth condition holds in s' and t', it is easy to see that it holds in s
and t.

5. It REQUESTCOMMIT(U,u), U an update access to X.

We first show that x is enabled as an action of LX in state t'. The proofs that
U e t'.created - t'.commit-requested and that perform(total(t',U)(U,u)) is in
fimbehs(Sx), are identical to the corresponding proofs for the read update case.
We must show that (U,u) commutes with every (V,v) in t'.intentiens(U'),
where U' * ancestors(U). We will show the stronger statement that if
t'.intentions(U') is not the empty sequence, then U' e ancestors(U). Since t'
E f(s'), if t'.intentions(U') is nonempty, then U' e s'.read-lockholders u
s'.update-lockholders. Thus, since it is enabled as an action of Mx in state s',
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U' e ancestors(U).

Thus n is enabled as an action of Lx in state t'. Choose t such that (t',it,t) is a

step of LX. We show that t e f(s). The first two conditions follow as for the
read access case. The third condition holds in s and t because it holds in s'
and t' and the only relevant component that is modified is that t.intentions(U)
= t'.intentions(U)(U,u), and (U,u) is an update operation.

The effects of ic imply that s.update-lockholders = s'.update-lockholders ui
(U), t.intentions(U) = t'.intentions(U)(U,u), and t.intentions(W) =
t'.intentions(W) for W * U. Since t' e f(s'), s'.update-lockholders is exactly
the set of transaction names T such that t'.intentions(T) contains an update
operation, together with To. Thus, s.update-lockholders = s'.update-
lockholders u (U), which is exactly the set of T such that t.intentions(T)
contains an update operation, together with To. Thus, the fourth condition is
satisfied.

Finally, we show the fifth condition. Fix any transaction name T. If T * U,
then since U is an access, T is not a descendant of U; then the fifth condition
holds in s and t because if holds in s' and t' and none of the relevant
components are modified. So suppose that T = U.

The effects of nt as an action of MX imply that s.map(U) is equal to some state
r of SX such that (s'.map(U'),perform(U,u),r) is a move of SX, where U' =
least(s'.update-lockholders); also, s.map(W) = s'.map(W) for all W * U. Since
all members of s'.update-lockholders must be ancestors of U by the
preconditions of x in Mx, U' is the least ancestor of U in s'.update-
lockholders, so the fact that t' e f(s') implies that perform(update(total(t',U)))
is a finite behavior of SX that can leave Sx in state s'.map(U'). Thus,
perform(update(total(t',U)))perform(U,u) is a finite behavior of Sx that can
leave Sx in state s.map(U). But perform(update(total(t',U)))perform(U,u) =
perform(update(total(t',U)(U,u))) = perform(update(total(t,U))). Thus,
perform(update(total(t,U))) is a finite behavior of SX that can leave Sx in state
s.map(U), as required.

Proposition 70: Mx implements Lx.
Proof: By Lemma 69 and Theorem 3.
Theorem 71: Mx is dynamic atomic.

Proof: By Proposition 70 and Theorem 67.

An immediate consequence of Theorems 71, 67 and the Dynamic Atomicity Theorem is that if
S is a generic system in which each generic object is either a Moss object or a locking object,
then Sis serially correct for all non-orphan transactions names.

11. Conclusions
We have presented a formal model for reasoning about atomic transactions that can include

nested subtransactions, and have used it to carry out an extensive development of the important
ideas about locking algorithms. First, we have stated the correctness conditions to be satisfied by
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transaction-processing algorithms; we have stated these at the user interface to the transaction-
processing system. Second, we have stated and proved a general Serializability Theorem that
implies the correctness of transaction-processing algorithms. Third, we have defined the concept
of "dynamic atomicity", a sufficient condition for satisfying the hypotheses of the Serializability
Theorem. Fourth, we have presented two locking algorithms: a new general commutativity-
based locking algorithm and a previously-known read-update locking algorithm. Fifth, we have
provided complete correctness proofs for both algorithms. We have proved the general
algorithm correct by showing that it satisfies the dynamic atomicity condition, and then we have
proved the read-update algorithm correct by showing that it implements the general algorithm.
All of these tasks have been quite manageable within the given framework.

The proofs we have constructed are very modular. Many interesting concepts are captured by
formal definitions, and many facts about these concepts are captured by formally-stated lemmas.
This modularity makes the development much easier to understand than it would be without it.
Moreover, much of the Machinery is reusable for presenting and verifying other algorithms.

We have already used our model to present and prove correctness of several other kinds of
transaction-processing algorithms, including timestamp-based algorithms for concurrency
control and recovery [1] and algorithms for management of replicated data [10] and of orphan
transactions [14]. Our treatment of timestamp algorithms is especially noteworthy because it
parallels the work in this paper very closely.

Briefly, the paper [1] contains descriptions of two timestamp algorithms: the timestamp
algorithm of Reed [24], designed for data objects that are accessible only by read and write
operations. and a new general algorithm that accommodates arbitrary data types. (This latter
algorithm generalizes work of Herlihy [13] for single-level transactions.) These algorithms both
involve assignment of ranges of timestamp values to transactions in such a way that the interval
of a child transaction is included in the interval of its parent, and the intervals of siblings are
disjoint. Responses to accesses are determined from previous accesses with earlier timestamps.

These algorithms are analyzed using the Serializability Theorem of this paper. This time, the
sibling order used is the timestamp order. Now the view condition says that the processing of
accesses to X is "consistent" with the timestamp order, in that reordering the processing in
timestamp order yields a correct behavior for Sx . The Serializability Theorem implies- that the
timestamp algorithms am serially correct for all non-orphan transaction names. Again, each
algorithm is described as the composition of object automata and a controller. Again, a local
condition ("static atomicity") is defined, this time saying that an object satisfies the view
condition using the timestamp order. As long as each object is static atomic, the whole system is
serially correct for non-orphan transactions. Again, we have the flexibility to implement objects
independendy as long as static atomicity is guaranteed. We show that both algorithms ensure
static atomicity.

There is much more that could be done using this model. For example, it would be interesting
to model other kinds of locking algorithms, such as those using multigranularity locking [11],
tree locking [2], and predicate locking [7]. Perhaps the dynamic atomicity and local dynamic
atomicity conditions defined in this paper will prove useful for reasoning about these other
algorithms as well.
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It would be interesting to see if our Serializability Theorem can be used to prove correctness of
other concurrency control algorithms besides those based on locking or timestamps.

It would also be interesting to integrate our approach more closely with the classical approach,
to try to combine the advantages of both. Our framework is more general than the classical
model, (because of its integrated treatment of concurrency control and recovery and because it
allows transactions to nest). On the other hand, our model includes more detail than the classical
model, and so it may seem more complicated. For example, the classical Serializability Theorem
is stated in simple combinatorial terms, while our Serializability Theorem involves involves a
fine-grained treatment of individual actions. We wonder if there is a simple combinatorial
condition similar to the hypothesis of the classical theorem (but taking suitable account of
nesting and failures), that implies the general correctness conditions described in this paper.

It would also be particularly interesting to use the framework to model some of the very
complex transaction-processing algorithms that tolerate processor "crashes", i.e., failures that
obliterate the contents of volatile memory [12].
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